
Fundamentals of Signal Processing

Minh Do

Fundamentals of Signal Processing
Course Authors:

Minh Do
Contributing Authors:

Richard Baraniuk
Hyeokho Choi

Minh Do
Benjamin Fite

Anders Gjendemsjo
Michael Haag
Don Johnson
Douglas Jones
Rob Nowak

Ricardo Radaelli-Sanchez
Justin Romberg
Clayton Scott
Ivan Selesnick
Melissa Selik
Online:

http://cnx.org/content/col10360/1.3/

ii

©2006 Richard Baraniuk, Hyeokho Choi, Minh Do, Benjamin Fite, Anders Gjendemsjo,
Michael Haag, Don Johnson, Douglas Jones, Rob Nowak, Ricardo Radaelli-Sanchez, Justin
Romberg, Clayton Scott, Ivan Selesnick, Melissa Selik
This work is licensed under the Creative Commons Attribution License:
http://creativecommons.org/licenses/by/2.0/

Table of Contents

1 Foundations
1.1 Signals Represent Information . 3
1.2 Introduction to Systems . 4
1.3 Discrete-Time Signals and Systems . 8
1.4 Linear Time-Invariant Systems . 10
1.5 Discrete-Time Convolution . 11
1.6 Review of Linear Algebra . 15
1.7 Hilbert Spaces . 29
1.8 Signal Expansions . 30
1.9 Fourier Analysis .33
1.10 Continuous-Time Fourier Transform (CTFT) . 34
1.11 Discrete-Time Fourier Transform (DTFT) .36
1.12 DFT as a Matrix Operation .36
1.13 The FFT Algorithm . 38

2 Sampling and Frequency Analysis
2.1 Introduction . 45
2.2 Proof . 46
2.3 Illustrations . 49
2.4 Sampling and Reconstruction with Matlab . 53
2.5 Systems View of Sampling and Reconstruction . 53
2.6 Sampling CT Signals: A Frequency Domain Perspective . 55
2.7 The DFT: Frequency Domain with a Computer Analysis 57
2.8 Discrete-Time Processing of CT Signals . 65
2.9 Short Time Fourier Transform .72
2.10 Spectrograms . 83
2.11 Filtering with the DFT . 86
2.12 Image Restoration Basics . 95

3 Digital Filtering
3.1 Di�erence Equation . 99
3.2 The Z Transform: De�nition . 103
3.3 Table of Common z-Transforms . 106
3.4 Understanding Pole/Zero Plots on the Z-Plane . 108
3.5 Filtering in the Frequency Domain . 111
3.6 Linear-Phase FIR Filters . 116
3.7 Filter Structures . 119
3.8 Overview of Digital Filter Design .119
3.9 Window Design Method .121
3.10 Frequency Sampling Design Method for FIR �lters . 122
3.11 Parks-McClellan FIR Filter Design .124
3.12 FIR Filter Design using MATLAB . 130
3.13 MATLAB FIR Filter Design Exercise . 132

4 Statistical and Adaptive Signal Processing
4.1 Introduction to Random Signals and Processes . 137
4.2 Stationary and Nonstationary Random Processes . 140
4.3 Random Processes: Mean and Variance . 142
4.4 Correlation and Covariance of a Random Signal . 146

iv

4.5 Autocorrelation of Random Processes . 150
4.6 Crosscorrelation of Random Processes . 153
4.7 Introduction to Adaptive Filters .154
4.8 Discrete-Time, Causal Wiener Filter . 155
4.9 Practical Issues in Wiener Filter Implementation . 158
4.10 Quadratic Minimization and Gradient Descent . 159
4.11 The LMS Adaptive Filter Algorithm . 160
4.12 First Order Convergence Analysis of the LMS Algorithm 162
4.13 Adaptive Equalization . 165

1

0 Introduction to Fundamentals of Signal Processing
0.1 What is Digital Signal Processing?
To understand what is Digital Signal Processing (DSP) let's examine what does each of
its words mean. � Signal� is any physical quantity that carries information. � Processing�
is a series of steps or operations to achieve a particular end. It is easy to see that Signal
Processing is used everywhere to extract information from signals or to convert information-
carrying signals from one form to another. For example, our brain and ears take input
speech signals, and then process and convert them into meaningful words. Finally, the
word � Digital� in Digital Signal Processing means that the process is done by computers,
microprocessors, or logic circuits.

The �eld DSP has expanded signi�cantly over that last few decades as a result of rapid
developments in computer technology and integrated-circuit fabrication. Consequently, DSP
has played an increasingly important role in a wide range of disciplines in science and
technology. Research and development in DSP are driving advancements in many high-
tech areas including telecommunications, multimedia, medical and scienti�c imaging, and
human-computer interaction.

To illustrate the digital revolution and the impact of DSP, consider the development of
digital cameras. Traditional �lm cameras mainly rely on physical properties of the optical
lens, where higher quality requires bigger and larger system, to obtain good images. When
digital cameras were �rst introduced, their quality were inferior compared to �lm cameras.
But as microprocessors become more powerful, more sophisticated DSP algorithms have
been developed for digital cameras to correct optical defects and improve the �nal image
quality. Thanks to these developments, the quality of consumer-grade digital cameras has
now surpassed the equivalence in �lm cameras. As further developments for digital cameras
attached to cell phones (cameraphones), where due to small size requirements of the lenses,
these cameras rely on DSP power to provide good images. Essentially, digital camera tech-
nology uses computational power to overcome physical limitations. We can �nd the similar
trend happens in many other applications of DSP such as digital communications, digital
imaging, digital television, and so on.

In summary, DSP has foundations on Mathematics, Physics, and Computer Science, and
can provide the key enabling technology in numerous applications.
0.2 Overview of Key Concepts in Digital Signal Processing
The two main characters in DSP are signals and systems. A signal is de�ned as any physical
quantity that varies with one or more independent variables such as time (one-dimensional
signal), or space (2-D or 3-D signal). Signals exist in several types. In the real-world, most
of signals are continuous-time or analog signals that have values continuously at every value
of time. To be processed by a computer, a continuous-time signal has to be �rst sampled
in time into a discrete-time signal so that its values at a discrete set of time instants can
be stored in computer memory locations. Furthermore, in order to be processed by logic
circuits, these signal values have to be quantized in to a set of discrete values, and the
�nal result is called a digital signal. When the quantization e�ect is ignored, the terms
discrete-time signal and digital signal can be used interchangeability.

In signal processing, a system is de�ned as a process whose input and output are sig-
nals. An important class of systems is the class of linear time-invariant (or shift-invariant)
systems. These systems have a remarkable property is that each of them can be completely
characterized by an impulse response function (sometimes is also called as point spread func-
tion), and the system is de�ned by a convolution (also referred to as a �ltering) operation.
Thus, a linear time-invariant system is equivalent to a (linear) �lter. Linear time-invariant

2

systems are classi�ed into two types, those that have �nite-duration impulse response (FIR)
and those that have an in�nite-duration impulse response (IIR).

A signal can be viewed as a vector in a vector space. Thus, linear algebra provides a
powerful framework to study signals and linear systems. In particular, given a vector space,
each signal can be represented (or expanded) as a linear combination of elementary signals.
The most important signal expansions are provided by the Fourier transforms. The Fourier
transforms, as with general transforms, are often used e�ectively to transform a problem
from one domain to another domain where it is much easier to solve or analyze. The two
domains of a Fourier transform have physical meaning and are called the time domain and
the frequency domain.

Sampling, or the conversion of continuous-domain real-life signals to discrete numbers
that can be processed by computers, is the essential bridge between the analog and the
digital worlds. It is important to understand the connections between signals and systems
in the real world and inside a computer. These connections are convenient to analyze in
the frequency domain. Moreover, many signals and systems are speci�ed by their frequency
characteristics.

Because any linear time-invariant system can be characterized as a �lter, the design of
such systems boils down to the design the associated �lters. Typically, in the �lter design
process, we determine the coe�cients of an FIR or IIR �lter that closely approximates the
desired frequency response speci�cations. Together with Fourier transforms, the z-transform
provides an e�ective tool to analyze and design digital �lters.

In many applications, signals are conveniently described via statistical models as random
signals. It is remarkable that optimum linear �lters (in the sense of minimum mean-square
error), so called Wiener �lters, can be determined using only second-order statistics (au-
tocorrelation and crosscorrelation functions) of a stationary process. When these statistics
cannot be speci�ed beforehand or change over time, we can employ adaptive �lters, where
the �lter coe�cients are adapted to the signal statistics. The most popular algorithm to
adaptively adjust the �lter coe�cients is the least-mean square (LMS) algorithm.

Chapter 1

Foundations

1.1 Signals Represent Information
Whether analog or digital, information is represented by the fundamental quantity in elec-
trical engineering: the signal. Stated in mathematical terms, a signal is merely a function.
Analog signals are continuous-valued; digital signals are discrete-valued. The independent
variable of the signal could be time (speech, for example), space (images), or the integers
(denoting the sequencing of letters and numbers in the football score).

1.1.1 Analog Signals
Analog signals are usually signals de�ned over continuous independent variable(s). Speech1
is produced by your vocal cords exciting acoustic resonances in your vocal tract. The result
is pressure waves propagating in the air, and the speech signal thus corresponds to a function
having independent variables of space and time and a value corresponding to air pressure:
s (x, t) (Here we use vector notation x to denote spatial coordinates). When you record
someone talking, you are evaluating the speech signal at a particular spatial location, x0say. An example of the resulting waveform s (x0, t) is shown in this �gure (Figure 1.1).

Photographs are static, and are continuous-valued signals de�ned over space. Black-
and-white images have only one value at each point in space, which amounts to its optical
re�ection properties. In Figure 1.2, an image is shown, demonstrating that it (and all other
images as well) are functions of two independent spatial variables.

Color images have values that express how re�ectivity depends on the optical spectrum.
Painters long ago found that mixing together combinations of the so-called primary colors�
red, yellow and blue�can produce very realistic color images. Thus, images today are usually
thought of as having three values at every point in space, but a di�erent set of colors is used:
How much of red, green and blue is present. Mathematically, color pictures are multivalued�
vector-valued�signals: s (x) = (r (x) , g (x) , b (x))T .

Interesting cases abound where the analog signal depends not on a continuous variable,
such as time, but on a discrete variable. For example, temperature readings taken every
hour have continuous�analog�values, but the signal's independent variable is (essentially)
the integers.

1http://cnx.org/content/m0049/latest/

3

4 CHAPTER 1. FOUNDATIONS

Speech Example

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
m

pl
itu

de

Figure 1.1: A speech signal's amplitude relates to tiny air pressure variations. Shownis a recording of the vowel "e" (as in "speech").

1.1.2 Digital Signals
The word "digital" means discrete-valued and implies the signal has an integer-valued inde-
pendent variable. Digital information includes numbers and symbols (characters typed on
the keyboard, for example). Computers rely on the digital representation of information to
manipulate and transform information. Symbols do not have a numeric value, and each is
represented by a unique number. The ASCII character code has the upper- and lowercase
characters, the numbers, punctuation marks, and various other symbols represented by a
seven-bit integer. For example, the ASCII code represents the letter a as the number 97 and
the letter A as 65. Figure 1.3 shows the international convention on associating characters
with integers.

1.2 Introduction to Systems

Signals are manipulated by systems. Mathematically, we represent what a system does by
the notation y (t) = S (x (t)), with x representing the input signal and y the output signal.

This notation mimics the mathematical symbology of a function: A system's input
is analogous to an independent variable and its output the dependent variable. For the
mathematically inclined, a system is a functional: a function of a function (signals are
functions).

Simple systems can be connected together�one system's output becomes another's input�
to accomplish some overall design. Interconnection topologies can be quite complicated, but
usually consist of weaves of three basic interconnection forms.

5

Lena

(a)

(b)

Figure 1.2: On the left is the classic Lena image, which is used ubiquitously as a testimage. It contains straight and curved lines, complicated texture, and a face. On theright is a perspective display of the Lena image as a signal: a function of two spatialvariables. The colors merely help show what signal values are about the same size. Inthis image, signal values range between 0 and 255; why is that?

6 CHAPTER 1. FOUNDATIONS

Ascii Table

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

num-
ber

char-
ac-
ter

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel
08 bs 09 ht 0A nl 0B vt 0C np 0D cr 0E so 0F si
10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb
18 car 19 em 1A sub 1B esc 1C fs 1D gs 1E rs 1F us
20 sp 21 ! 22 " 23 24 $ 25 % 26 & 27 '
28 (29) 2A * 2B + 2C , 2D - 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F 0
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B [5C \ 5D] 5E � 5F _
60 ' 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C | 7D } 7E ∼ 7F del

Figure 1.3: The ASCII translation table shows how standard keyboard charactersare represented by integers. This table displays the so-called 7-bit code (how manycharacters in a seven-bit code?); extended ASCII has an 8-bit code. The numeric codesare represented in hexadecimal (base-16) notation. The mnemonic characters correspondto control characters, some of which may be familiar (like cr for carriage return) andsome not (bel means a "bell").

De�nition of a system
System

x(t) y(t)

Figure 1.4: The system depicted has input x (t) and output y (t). Mathematically,systems operate on function(s) to produce other function(s). In many ways, systems arelike functions, rules that yield a value for the dependent variable (our output signal) foreach value of its independent variable (its input signal). The notation y (t) = S (x (t))corresponds to this block diagram. We term S (·) the input-output relation for the system.

7

cascade
S1[•] S2[•]

x(t) y(t)w(t)

Figure 1.5: The most rudimentary ways of interconnecting systems are shown in the�gures in this section. This is the cascade con�guration.

parallel

x(t)

x(t)

x(t)

+
y(t)

S1[•]

S2[•]

Figure 1.6: The parallel con�guration.

1.2.1 Cascade Interconnection
The simplest form is when one system's output is connected only to another's input. Math-
ematically, w (t) = S1 (x (t)), and y (t) = S2 (w (t)), with the information contained in x (t)
processed by the �rst, then the second system. In some cases, the ordering of the systems
matter, in others it does not. For example, in the fundamental model of communication 2

the ordering most certainly matters.

1.2.2 Parallel Interconnection
A signal x (t) is routed to two (or more) systems, with this signal appearing as the input
to all systems simultaneously and with equal strength. Block diagrams have the convention
that signals going to more than one system are not split into pieces along the way. Two or
more systems operate on x (t) and their outputs are added together to create the output
y (t). Thus, y (t) = S1 (x (t))+S2 (x (t)), and the information in x (t) is processed separately
by both systems.

1.2.3 Feedback Interconnection
The subtlest interconnection con�guration has a system's output also contributing to its
input. Engineers would say the output is "fed back" to the input through system 2, hence
the terminology. The mathematical statement of the feedback interconnection (Figure 1.7)

2http://cnx.org/content/m0002/latest/#commsys

8 CHAPTER 1. FOUNDATIONS

feedback
S1[•]

x(t) e(t) y(t)

S2[•]

–

+

Figure 1.7: The feedback con�guration.

is that the feed-forward system produces the output: y (t) = S1 (e (t)). The input e (t)
equals the input signal minus the output of some other system's output to y (t): e (t) =
x (t)−S2 (y (t)). Feedback systems are omnipresent in control problems, with the error signal
used to adjust the output to achieve some condition de�ned by the input (controlling) signal.
For example, in a car's cruise control system, x (t) is a constant representing what speed
you want, and y (t) is the car's speed as measured by a speedometer. In this application,
system 2 is the identity system (output equals input).

1.3 Discrete-Time Signals and Systems
Mathematically, analog signals are functions having as their independent variables contin-
uous quantities, such as space and time. Discrete-time signals are functions de�ned on
the integers; they are sequences. As with analog signals, we seek ways of decomposing
discrete-time signals into simpler components. Because this approach leading to a better
understanding of signal structure, we can exploit that structure to represent information
(create ways of representing information with signals) and to extract information (retrieve
the information thus represented). For symbolic-valued signals, the approach is di�erent:
We develop a common representation of all symbolic-valued signals so that we can embody
the information they contain in a uni�ed way. From an information representation perspec-
tive, the most important issue becomes, for both real-valued and symbolic-valued signals,
e�ciency: what is the most parsimonious and compact way to represent information so that
it can be extracted later.
1.3.1 Real- and Complex-valued Signals
A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }.

We usually draw discrete-time signals as stem plots to emphasize the fact they are
functions de�ned only on the integers. We can delay a discrete-time signal by an integer
just as with analog ones. A delayed unit sample has the expression δ (n−m), and equals
one when n = m.
1.3.2 Complex Exponentials
The most important signal is, of course, the complex exponential sequence.

s (n) = ej2πfn (1.1)

9

Cosine

n

sn

1

…

…

Figure 1.8: The discrete-time cosine signal is plotted as a stem plot. Can you �nd theformula for this signal?

Unit sample

1

n

δn

Figure 1.9: The unit sample.

1.3.3 Sinusoids
Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn + φ). As opposed to
analog complex exponentials and sinusoids that can have their frequencies be any real value,
frequencies of their discrete-time counterparts yield unique waveforms only when f lies in
the interval (− (1

2

)
, 1

2

]. This property can be easily understood by noting that adding an
integer to the frequency of the discrete-time complex exponential has no e�ect on the signal's
value.

ej2π(f+m)n = ej2πfnej2πmn

= ej2πfn (1.2)
This derivation follows because the complex exponential evaluated at an integer multiple of
2π equals one.
1.3.4 Unit Sample
The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =
{

1 if n = 0
0 otherwise (1.3)

Examination of a discrete-time signal's plot, like that of the cosine signal shown in
Figure 1.8, reveals that all signals consist of a sequence of delayed and scaled unit samples.

10 CHAPTER 1. FOUNDATIONS

Because the value of a sequence at each integer m is denoted by s (m) and the unit sample
delayed to occur at m is written δ (n−m), we can decompose any signal as a sum of unit
samples delayed to the appropriate location and scaled by the signal value.

s (n) =
∞∑

m=−∞
(s (m) δ (n−m)) (1.4)

This kind of decomposition is unique to discrete-time signals, and will prove useful subse-
quently.

1.3.5 Symbolic Signals
An interesting aspect of discrete-time signals is that their values do not need to be real
numbers. We do have real-valued discrete-time signals like the sinusoid, but we also have
signals that denote the sequence of characters typed on the keyboard. Such characters
certainly aren't real numbers, and as a collection of possible signal values, they have little
mathematical structure other than that they are members of a set. More formally, each
element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols
to being members of the English or Greek alphabet. They could represent keyboard char-
acters, bytes (8-bit quantities), integers that convey daily temperature. Whether controlled
by software or not, discrete-time systems are ultimately constructed from digital circuits,
which consist entirely of analog circuit elements. Furthermore, the transmission and recep-
tion of discrete-time signals, like e-mail, is accomplished with analog signals and systems.
Understanding how discrete-time and analog signals and systems intertwine is perhaps the
main goal of this course.

1.3.6 Discrete-Time Systems
Discrete-time systems can act on discrete-time signals in ways similar to those found in
analog signals and systems. Because of the role of software in discrete-time systems, many
more di�erent systems can be envisioned and "constructed" with programs than can be
with analog signals. In fact, a special class of analog signals can be converted into discrete-
time signals, processed with software, and converted back into an analog signal, all without
the incursion of error. For such signals, systems can be easily produced in software, with
equivalent analog realizations di�cult, if not impossible, to design.

1.4 Linear Time-Invariant Systems
A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0.
Choosing n0 to be negative advances the signal along the integers. As opposed to analog
delays3, discrete-time delays can only be integer valued. In the frequency domain, delaying
a signal corresponds to a linear phase shift of the signal's discrete-time Fourier transform:(
s (n− n0) ↔ e−(j2πfn0)S

(
ej2πf

)).
Linear discrete-time systems have the superposition property.

Superposition
S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (1.5)

3http://cnx.org/content/m0006/latest/#delay

11

A discrete-time system is called shift-invariant (analogous to time-invariant analog sys-
tems4) if delaying the input delays the corresponding output.
Shift-Invariant

If S (x (n)) = y (n) , Then S (x (n− n0)) = y (n− n0) (1.6)
We use the term shift-invariant to emphasize that delays can only have integer values in
discrete-time, while in analog signals, delays can be arbitrarily valued.

We want to concentrate on systems that are both linear and shift-invariant. It will
be these that allow us the full power of frequency-domain analysis and implementations.
Because we have no physical constraints in "constructing" such systems, we need only a
mathematical speci�cation. In analog systems, the di�erential equation speci�es the input-
output relationship in the time-domain. The corresponding discrete-time speci�cation is the
di�erence equation.
The Di�erence Equation

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (1.7)
Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and
to the current and past values of the input signal x (n). The system's characteristics are
determined by the choices for the number of coe�cients p and q and the coe�cients' values
{a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0 ? This coe�cient
would multiply the y (n) term in the di�erence equation (Equation 1.7). We have
essentially divided the equation by it, which does not change the input-output
relationship. We have thus created the convention that a0 is always one.
As opposed to di�erential equations, which only provide an implicit description of a

system (we must somehow solve the di�erential equation), di�erence equations provide an
explicit way of computing the output for any input. We simply express the di�erence
equation by a program that calculates each output from the previous output values, and
the current and previous inputs.

1.5 Discrete-Time Convolution
1.5.1 Overview
Convolution is a concept that extends to all systems that are both linear and time-
invariant5 (LTI). The idea of discrete-time convolution is exactly the same as that of
continuous-time convolution6. For this reason, it may be useful to look at both versions to
help your understanding of this extremely important concept. Recall that convolution is a
very powerful tool in determining a system's output from knowledge of an arbitrary input
and the system's impulse response. It will also be helpful to see convolution graphically with
your own eyes and to play around with it some, so experiment with the applets7 available
on the internet. These resources will o�er di�erent approaches to this crucial concept.

4http://cnx.org/content/m0007/latest/#timeinv
5http://cnx.org/content/m10084/latest/
6http://cnx.org/content/m10085/latest/
7http://www.jhu.edu/∼signals

12 CHAPTER 1. FOUNDATIONS

1.5.2 Convolution Sum
As mentioned above, the convolution sum provides a concise, mathematical way to express
the output of an LTI system based on an arbitrary discrete-time input signal and the system's
response. The convolution sum is expressed as

y [n] =
∞∑

k=−∞

(x [k]h [n− k]) (1.8)

As with continuous-time, convolution is represented by the symbol *, and can be written as
y [n] = x [n] ∗ h [n] (1.9)

By making a simple change of variables into the convolution sum, k = n− k, we can easily
show that convolution is commutative:

x [n] ∗ h [n] = h [n] ∗ x [n] (1.10)
For more information on the characteristics of convolution, read about the Properties of
Convolution8.
1.5.3 Derivation
We know that any discrete-time signal can be represented by a summation of scaled and
shifted discrete-time impulses. Since we are assuming the system to be linear and time-
invariant, it would seem to reason that an input signal comprised of the sum of scaled and
shifted impulses would give rise to an output comprised of a sum of scaled and shifted
impulse responses. This is exactly what occurs in convolution. Below we present a more
rigorous and mathematical look at the derivation:

Letting H be a DT LTI system, we start with the following equation and work our way
down the convolution sum!

y [n] = H [x [n]]
= H

[∑∞
k=−∞ (x [k] δ [n− k])

]
=

∑∞
k=−∞ (H [x [k] δ [n− k]])

=
∑∞

k=−∞ (x [k]H [δ [n− k]])
=

∑∞
k=−∞ (x [k]h [n− k])

(1.11)

Let us take a quick look at the steps taken in the above derivation. After our initial equation,
we using the DT sifting property9 to rewrite the function, x [n], as a sum of the function
times the unit impulse. Next, we can move around the H operator and the summation
because H [Ω] is a linear, DT system. Because of this linearity and the fact that x [k] is a
constant, we can pull the previous mentioned constant out and simply multiply it by H [Ω].
Finally, we use the fact that H [Ω] is time invariant in order to reach our �nal state - the
convolution sum!

A quick graphical example may help in demonstrating why convolution works.
1.5.4 Convolution Through Time (A Graphical Approach)
In this section we will develop a second graphical interpretation of discrete-time convolution.
We will begin this by writing the convolution sum allowing x to be a causal, length-m signal

8http://cnx.org/content/m10088/latest/
9http://cnx.org/content/m10059/latest/#sifting

13

Figure 1.10: A single impulse input yields the system's impulse response.

Figure 1.11: A scaled impulse input yields a scaled response, due to the scalingproperty of the system's linearity.

14 CHAPTER 1. FOUNDATIONS

Figure 1.12: We now use the time-invariance property of the system to show that adelayed input results in an output of the same shape, only delayed by the same amountas the input.

Figure 1.13: We now use the additivity portion of the linearity property of the systemto complete the picture. Since any discrete-time signal is just a sum of scaled and shifteddiscrete-time impulses, we can �nd the output from knowing the input and the impulseresponse.

15

Figure 1.14: This is the end result that we are looking to �nd.

and h to be a causal, length-k, LTI system. This gives us the �nite summation,

y [n] =
m−1∑
l=0

(x [l]h [n− l]) (1.12)

Notice that for any given n we have a sum of the products of xl and a time-delayed h−l.This is to say that we multiply the terms of x by the terms of a time-reversed h and add
them up.

Going back to the previous example:
What we are doing in the above demonstration is reversing the impulse response in time

and "walking it across" the input signal. Clearly, this yields the same result as scaling,
shifting and summing impulse responses.

This approach of time-reversing, and sliding across is a common approach to presenting
convolution, since it demonstrates how convolution builds up an output through time.

1.6 Review of Linear Algebra
Vector spaces are the principal object of study in linear algebra. A vector space is always
de�ned with respect to a �eld of scalars.

1.6.1 Fields
A �eld is a set F equipped with two operations, addition and mulitplication, and containing
two special members 0 and 1 (0 6= 1), such that for all {a, b, c} ∈ F

1. (a) a + b ∈ F

16 CHAPTER 1. FOUNDATIONS

Figure 1.15: Here we reverse the impulse response, h , and begin its traverse at time
0.

Figure 1.16: We continue the traverse. See that at time 1 , we are multiplying twoelements of the input signal by two elements of the impulse response.

17

Figure 1.17

(b) a + b = b + a

(c) (a + b) + c = a + (b + c)

(d) a + 0 = a

(e) there exists −a such that a + (−a) = 0

2. (a) ab ∈ F

(b) ab = ba

(c) (ab) c = a (bc)

(d) a · 1 = a

(e) there exists a−1 such that aa−1 = 1

3. a (b + c) = ab + ac

More concisely
1. F is an abelian group under addition
2. F is an abelian group under multiplication
3. multiplication distributes over addition

1.6.1.1 Examples
Q, R, C

18 CHAPTER 1. FOUNDATIONS

Figure 1.18: If we follow this through to one more step, n = 4, then we can see thatwe produce the same output as we saw in the initial example.

19

1.6.2 Vector Spaces
Let F be a �eld, and V a set. We say V is a vector space over F if there exist two operations,
de�ned for all a ∈ F , u ∈ V and v ∈ V :
• vector addition: (u, v) → u + v ∈ V

• scalar multiplication: (a,v) → av ∈ V

and if there exists an element denoted 0 ∈ V , such that the following hold for all a ∈ F ,
b ∈ F , and u ∈ V , v ∈ V , and w ∈ V

1. (a) u + (v + w) = (u + v) + w

(b) u + v = v + u

(c) u + 0 = u

(d) there exists −u such that u + (−u) = 0

2. (a) a (u + v) = au + av

(b) (a + b)u = au + bu

(c) (ab)u = a (bu)

(d) 1 · u = u

More concisely,
1. V is an abelian group under plus
2. Natural properties of scalar multiplication

1.6.2.1 Examples
• RN is a vector space over R

• CN is a vector space over C

• CN is a vector space over R

• RN is not a vector space over C

The elements of V are called vectors.

1.6.3 Euclidean Space
Throughout this course we will think of a signal as a vector

x =

x1

x2...
xN

 =
(

x1 x2 . . . xN

)T

The samples {xi} could be samples from a �nite duration, continuous time signal, for ex-
ample.

A signal will belong to one of two vector spaces:

20 CHAPTER 1. FOUNDATIONS

Figure 1.19: S is any line through the origin.

1.6.3.1 Real Euclidean space
x ∈ RN (over R)

1.6.3.2 Complex Euclidean space
x ∈ CN (over C)

1.6.4 Subspaces
Let V be a vector space over F .

A subset S ⊆ V is called a subspace of V if S is a vector space over F in its own right.

Example 1.1:
V = R2, F = R, S = any line though the origin.
Are there other subspaces?
Theorem 1.1:
S ⊆ V is a subspace if and only if for all a ∈ F and b ∈ F and for all s ∈ S and
t ∈ S, as + bt ∈ S

1.6.5 Linear Independence
Let u1, . . . ,uk ∈ V .

We say that these vectors are linearly dependent if there exist scalars a1, . . . , ak ∈ F
such that

k∑
i=1

(aiui) = 0 (1.13)

and at least one ai 6= 0.
If Equation 1.13 only holds for the case a1 = · · · = ak = 0, we say that the vectors are

linearly independent.
Example 1.2:

21

Figure 1.20: < S > is the xy-plane.

1

 1
−1
2

− 2

 −2
3
0

+ 1

 −5
7
−2

 = 0

so these vectors are linearly dependent in R3.

1.6.6 Spanning Sets
Consider the subset S = {v1, v2, . . . , vk}. De�ne the span of S

< S >≡ span (S) ≡

{
k∑

i=1

(aivi) |ai ∈ F

}

Fact: < S > is a subspace of V .
Example 1.3:
V = R3, F = R, S = {v1, v2}, v1 =

 1
0
0

, v2 =

 0
1
0

 ⇒ < S >= xy-plane.

1.6.6.1 Aside
If S is in�nite, the notions of linear independence and span are easily generalized:

We say S is linearly independent if, for every �nite collection u1, . . . , uk ∈ S, (k arbitrary)
we have

k∑
i=1

(aiui) = 0⇒ ai = 0 ,

The span of S is
< S >=

{
k∑

i=1

(aiui) |ai ∈ F ui ∈ S k < ∞

}
Note: In both de�nitions, we only consider �nite sums.

22 CHAPTER 1. FOUNDATIONS

1.6.7 Bases
A set B ⊆ V is called a basis for V over F if and only if

1. B is linearly independent
2. < B >= V

Bases are of fundamental importance in signal processing. They allow us to decompose a
signal into building blocks (basis vectors) that are often more easily understood.

Example 1.4:
V = (real or complex) Euclidean space, RN or CN .

B = {e1, . . . , eN} ≡ standard basis

ei =

0...
1...
0

where the 1 is in the ith position.

Example 1.5:
V = CN over C.

B = {u1, . . . , uN}

which is the DFT basis.

uk =

1

e−(j2π k
N)

...
e−(j2π k

N (N−1))

where j =

√
−1.

1.6.7.1 Key Fact
If B is a basis for V , then every v ∈ V can be written uniquely (up to order of terms) in
the form

v =
N∑

i=1

(aivi)

where ai ∈ F and vi ∈ B.
1.6.7.2 Other Facts
• If S is a linearly independent set, then S can be extended to a basis.
• If < S >= V , then S contains a basis.

23

1.6.8 Dimension
Let V be a vector space with basis B. The dimension of V , denoted dim (V), is the cardi-
nality of B.

Theorem 1.2:
Every vector space has a basis.
Theorem 1.3:
Every basis for a vector space has the same cardinality.
⇒ dim (V) is well-de�ned.
If dim (V) < ∞, we say V is �nite dimensional.

1.6.8.1 Examples

vector space �eld of scalars dimension
RN R
CN C
CN R

Every subspace is a vector space, and therefore has its own dimension.
Example 1.6:
Suppose S = {u1, . . . , uk} ⊆ V is a linearly independent set. Then

dim (< S >) =

Facts
• If S is a subspace of V , then dim (S) ≤ dim (V).
• If dim (S) = dim (V) < ∞, then S = V .

1.6.9 Direct Sums
Let V be a vector space, and let S ⊆ V and T ⊆ V be subspaces.

We say V is the direct sum of S and T , written V = (S ⊕ T), if and only if for every
v ∈ V , there exist unique s ∈ S and t ∈ T such that v = s + t.

If V = (S ⊕ T), then T is called a complement of S.
Example 1.7:

V = C ′ = left{f : R → R|f is continuousright}
S = even funcitons inC ′

T = odd funcitons inC ′

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t))

If f = g + h = g′ + h′, g ∈ S and g′ ∈ S, h ∈ T and h′ ∈ T , then g − g′ = h′ − h is
odd and even, which implies g = g′ and h = h′.

24 CHAPTER 1. FOUNDATIONS

1.6.9.1 Facts
1. Every subspace has a complement
2. V = (S ⊕ T) if and only if

(a) S
⋂

T = {0}
(b) < S, T >= V

3. If V = (S ⊕ T), and dim (V) < ∞, then dim (V) = dim (S) + dim (T)

1.6.9.2 Proofs
Invoke a basis.
1.6.10 Norms
Let V be a vector space over F . A norm is a mapping (V → F), denoted by ‖ · ‖, such that
forall u ∈ V , v ∈ V , and λ ∈ F

1. ‖ u ‖> 0 if u 6= 0

2. ‖ λu ‖= |λ| ‖ u ‖

3. ‖ u + v ‖≤‖ u ‖ + ‖ v ‖

1.6.10.1 Examples
Euclidean norms:

x ∈ RN :
‖ x ‖=

(
N∑

i=1

(
xi

2
)) 1

2

x ∈ CN :
‖ x ‖=

(
N∑

i=1

(
(|xi|)2

)) 1
2

1.6.10.2 Induced Metric
Every norm induces a metric on V

d (u,v) ≡‖ u− v ‖

which leads to a notion of "distance" between vectors.
1.6.11 Inner products
Let V be a vector space over F , F = R or C. An inner product is a mapping V × V → F ,
denoted · · ·, such that

1. v · v ≥ 0, and (v · v = 0 ⇔ v = 0)

2. u · v = v · u∗

3. au + bv · w = au · w + bv · w

25

1.6.11.1 Examples
RN over R:

x · y = xT y =
N∑

i=1

(xiyi)

CN over C:
x · y = xHy =

N∑
i=1

(xi
∗yi)

If x = (x1, . . . , xN)T ∈ C, then

xH ≡

 x1
∗

...
xN

∗

T

is called the "Hermitian," or "conjugate transpose" of x.
1.6.12 Triangle Inequality
If we de�ne ‖ u ‖= u · u, then

‖ u + v ‖≤‖ u ‖ + ‖ v ‖

Hence, every inner product induces a norm.
1.6.13 Cauchy-Schwarz Inequality
For all u ∈ V , v ∈ V ,

|u · v| ≤‖ u ‖‖ v ‖

In inner product spaces, we have a notion of the angle between two vectors:
∠ (u,v) = arccos

(
u · v

‖ u ‖‖ v ‖

)
∈ [0, 2π)

1.6.14 Orthogonality
u and v are orthogonal if

u · v = 0

Notation: (u ⊥ v).
If in addition ‖ u ‖=‖ v ‖= 1, we say u and v are orthonormal.
In an orthogonal (orthonormal) set, each pair of vectors is orthogonal (orthonormal).

1.6.15 Orthonormal Bases
An Orthonormal basis is a basis {vi} such that

vi · vi = δij =
{

1 if i = j
0 if i 6= j

26 CHAPTER 1. FOUNDATIONS

Figure 1.21: Orthogonal vectors in R2.

Example 1.8:
The standard basis for RN or CN

Example 1.9:
The normalized DFT basis

uk =
1√
N

1

e−(j2π k
N)

...
e−(j2π k

N (N−1))

1.6.16 Expansion Coe�cients
If the representation of v with respect to {vi} is

v =
∑

(aivi)

then
ai = vi · v

1.6.17 Gram-Schmidt
Every inner product space has an orthonormal basis. Any (countable) basis can be made
orthogonal by the Gram-Schmidt orthogonalization process.
1.6.18 Orthogonal Compliments
Let S ⊆ V be a subspace. The orthogonal compliment S is

S⊥ = {u |u ∈ V u · v = 0 v ∈ S , }

S⊥ is easily seen to be a subspace.
If dim (v) < ∞, then V =

(
S ⊕ S⊥

).

27

Aside: If dim (v) = ∞, then in order to have V =
(
S ⊕ S⊥

) we require V to be
a Hilbert Space.

1.6.19 Linear Transformations
Loosely speaking, a linear transformation is a mapping from one vector space to another
that preserves vector space operations.

More precisely, let V , W be vector spaces over the same �eld F . A linear transforma-
tion is a mapping T : V → W such that

T (au + bv) = aT (u) + bT (v)

for all a ∈ F , b ∈ F and u ∈ V , v ∈ V .
In this class we will be concerned with linear transformations between (real or complex)

Euclidean spaces, or subspaces thereof.

1.6.20 Image
image (T) = {w |w ∈ W T (v) = wfor somev}

1.6.21 Nullspace
Also known as the kernel:

ker (T) = {v |v ∈ V T (v) = 0}

Both the image and the nullspace are easily seen to be subspaces.

1.6.22 Rank
rank (T) = dim (image (T))

1.6.23 Nullity
null (T) = dim (ker (T))

1.6.24 Rank plus nullity theorem
rank (T) + null (T) = dim (V)

28 CHAPTER 1. FOUNDATIONS

Figure 1.22

1.6.25 Matrices
Every linear transformation T has a matrix representation. If T : EN → EM , E = R or
C, then T is represented by an M ×N matrix

A =

 a11 . . . a1N...
aM1 . . . aMN

where (a1i, . . . , aMi)

T = T (ei) and ei = (0, . . . , 1, . . . , 0)T is the ith standard basis vector.
Aside: A linear transformation can be represented with respect to any bases of
EN and EM , leading to a di�erent A. We will always represent a linear transfor-
mation using the standard bases.

1.6.26 Column span
colspan (A) =< A >= image (A)

1.6.27 Duality
If A : RN → RM , then

ker⊥ (A) = image
(
AT
)

If A : CN → CM , then
ker⊥ (A) = image

(
AH
)

29

1.6.28 Inverses
The linear transformation/matrix A is invertible if and only if there exists a matrix B such
that AB = BA = I (identity).

Only square matrices can be invertible.
Theorem 1.4:
Let A : FN → FN be linear, F = R or C. The following are equivalent:

1.A is invertible (nonsingular)
2.rank (A) = N

3.null (A) = 0

4.detA 6= 0

5.The columns of A form a basis.
If A−1 = AT (or AH in the complex case), we say A is orthogonal (or unitary).

1.7 Hilbert Spaces
1.7.1 Hilbert Spaces
A vector space S with a valid inner product10 de�ned on it is called an inner product
space, which is also a normed linear space. A Hilbert space is an inner product space
that is complete with respect to the norm de�ned using the inner product. Hilbert spaces
are named after David Hilbert11, who developed this idea through his studies of integral
equations. We de�ne our valid norm using the inner product as:

‖ x ‖=
√

x · x (1.14)
Hilbert spaces are useful in studying and generalizing the concepts of Fourier expansion,
Fourier transforms, and are very important to the study of quantum mechanics. Hilbert
spaces are studied under the functional analysis branch of mathematics.
1.7.1.1 Examples of Hilbert Spaces
Below we will list a few examples of Hilbert spaces12. You can verify that these are valid
inner products at home.
• For Cn,

x · y = yT x =
(

y0
∗ y1

∗ . . . yn−1
∗)

x0

x1...
xn−1

 =
n−1∑
i=0

(xiyi
∗)

• Space of �nite energy complex functions: L2 (R)

f · g =
∫ ∞

−∞
f (t) g (t)∗dt

10http://cnx.org/content/m10755/latest/
11http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Hilbert.html
12http://cnx.org/content/m10434/latest/

30 CHAPTER 1. FOUNDATIONS

• Space of square-summable sequences: `2 (Z)

x · y =
∞∑

i=−∞

(
x [i] y [i]∗

)

1.8 Signal Expansions
1.8.1 Main Idea
When working with signals many times it is helpful to break up a signal into smaller, more
manageable parts. Hopefully by now you have been exposed to the concept of eigenvectors13
and there use in decomposing a signal into one of its possible basis. By doing this we are able
to simplify our calculations of signals and systems through eigenfunctions of LTI systems14.

Now we would like to look at an alternative way to represent signals, through the use
of orthonormal basis. We can think of orthonormal basis as a set of building blocks we
use to construct functions. We will build up the signal/vector as a weighted sum of basis
elements.

Example 1.10:
The complex sinusoids 1√

T
ejω0nt for all −∞ < n < ∞ form an orthonormal basis

for L2 ([0, T]).
In our Fourier series15 equation, f (t) =

∑∞
n=−∞

(
cnejω0nt

), the {cn} are just
another representation of f (t).

note: For signals/vectors in a Hilbert Space16, the expansion coe�cients are
easy to �nd.

1.8.2 Alternate Representation
Recall our de�nition of a basis: A set of vectors {bi} in a vector space S is a basis if

1. The bi are linearly independent.
2. The bi span17 S. That is, we can �nd {αi}, where αi ∈ C (scalars) such that

x =
∑

i

(αibi) , x ∈ S (1.15)

where x is a vector in S, α is a scalar in C, and b is a vector in S.
Condition 2 in the above de�nition says we can decompose any vector in terms of the

{bi}. Condition 1 ensures that the decomposition is unique (think about this at home).
note: The {αi} provide an alternate representation of x.

13http://cnx.org/content/m10736/latest/
14http://cnx.org/content/m10500/latest/
15http://cnx.org/content/m10496/latest/
16http://cnx.org/content/m10755/latest/#sec2
17http://cnx.org/content/m10734/latest/#span_sec

31

Example 1.11:
Let us look at simple example in R2, where we have the following vector:

x =
(

1
2

)
Standard Basis: {e0, e1} =

{
(1, 0)T

, (0, 1)T
}

x = e0 + 2e1

Alternate Basis: {h0, h1} =
{

(1, 1)T
, (1,−1)T

}
x =

3
2
h0 +

−1
2

h1

In general, given a basis {b0, b1} and a vector x ∈ R2, how do we �nd the α0 and α1such that
x = α0b0 + α1b1 (1.16)

1.8.3 Finding the Alphas
Now let us address the question posed above about �nding αi's in general for R2. We start
by rewriting Equation 1.16 so that we can stack our bi's as columns in a 2×2 matrix.(

x
)

= α0

(
b0

)
+ α1

(
b1

) (1.17)

(
x
)

=

... ...
b0 b1... ...

(α0

α1

)
(1.18)

Example 1.12:
Here is a simple example, which shows a little more detail about the above equa-
tions. (

x [0]
x [1]

)
= α0

(
b0 [0]
b0 [1]

)
+ α1

(
b1 [0]
b1 [1]

)
=

(
α0b0 [0] + α1b1 [0]
α0b0 [1] + α1b1 [1]

) (1.19)

(
x [0]
x [1]

)
=
(

b0 [0] b1 [0]
b0 [1] b1 [1]

)(
α0

α1

)
(1.20)

1.8.3.1 Simplifying our Equation
To make notation simpler, we de�ne the following two items from the above equations:
• Basis Matrix:

B =

... ...
b0 b1... ...

32 CHAPTER 1. FOUNDATIONS

• Coe�cient Vector:
α =

(
α0

α1

)
This gives us the following, concise equation:

x = Bα (1.21)
which is equivalent to x =

∑1
i=0 (αibi).

Example 1.13:
Given a standard basis,

{(
1
0

)
,

(
0
1

)}
, then we have the following basis ma-

trix:
B =

(
0 1
1 0

)
To get the αi's, we solve for the coe�cient vector in Equation 1.21

α = B−1x (1.22)
Where B−1 is the inverse matrix18 of B.
1.8.3.2 Examples

Example 1.14:
Let us look at the standard basis �rst and try to calculate α from it.

B =
(

1 0
0 1

)
= I

Where I is the identity matrix. In order to solve for α let us �nd the inverse of
B �rst (which is obviously very trivial in this case):

B−1 =
(

1 0
0 1

)
Therefore we get,

α = B−1x = x

Example 1.15:
Let us look at a ever-so-slightly more complicated basis of

{(
1
1

)
,

(
1
−1

)}
=

{h0, h1} Then our basis matrix and inverse basis matrix becomes:

B =
(

1 1
1 −1

)

B−1 =
(

1
2

1
2

1
2

−1
2

)
18http://cnx.org/content/m2113/latest/

33

and for this example it is given that
x =

(
3
2

)
Now we solve for α

α = B−1x =
(

1
2

1
2

1
2

−1
2

)(
3
2

)
=
(

2.5
0.5

)
and we get

x = 2.5h0 + 0.5h1

Exercise 1.1:
Now we are given the following basis matrix and x:

{b0, b1} =
{(

1
2

)
,

(
3
0

)}
x =

(
3
2

)
For this problem, make a sketch of the bases and then represent x in terms of b0and b1.
note: A change of basis simply looks at x from a "di�erent perspective." B−1

transforms x from the standard basis to our new basis, {b0, b1}. Notice that thisis a totally mechanical procedure.

1.8.4 Extending the Dimension and Space
We can also extend all these ideas past just R2 and look at them in Rn and Cn. This
procedure extends naturally to higher (>2) dimensions. Given a basis {b0, b1, . . . , bn−1} for
Rn, we want to �nd {α0, α1, . . . , αn−1} such that

x = α0b0 + α1b1 + · · ·+ αn−1bn−1 (1.23)
Again, we will set up a basis matrix

B =
(

b0 b1 b2 . . . bn−1

)
where the columns equal the basis vectors and it will always be an n×n matrix (although
the above matrix does not appear to be square since we left terms in vector notation). We
can then proceed to rewrite Equation 1.21

x =
(

b0 b1 . . . bn−1

) α0...
αn−1

 = Bα

and
α = B−1x

1.9 Fourier Analysis
Fourier analysis is fundamental to understanding the behavior of signals and systems. This
is a result of the fact that sinusoids are Eigenfunctions19 of linear, time-invariant (LTI)20

19http://cnx.org/content/m10500/latest/
20http://cnx.org/content/m10084/latest/

34 CHAPTER 1. FOUNDATIONS

systems. This is to say that if we pass any particular sinusoid through a LTI system, we get a
scaled version of that same sinusoid on the output. Then, since Fourier analysis allows us to
rede�ne the signals in terms of sinusoids, all we need to do is determine how any given system
e�ects all possible sinusoids (its transfer function21) and we have a complete understanding
of the system. Furthermore, since we are able to de�ne the passage of sinusoids through
a system as multiplication of that sinusoid by the transfer function at the same frequency,
we can convert the passage of any signal through a system from convolution22 (in time) to
multiplication (in frequency). These ideas are what give Fourier analysis its power.

Now, after hopefully having sold you on the value of this method of analysis, we must ex-
amine exactly what we mean by Fourier analysis. The four Fourier transforms that comprise
this analysis are the Fourier Series23, Continuous-Time Fourier Transform (Section 2.10),
Discrete-Time Fourier Transform (Section 2.11) and Discrete Fourier Transform24. For this
document, we will view the Laplace Transform25 and Z-Transform (Section 4.3) as simply
extensions of the CTFT and DTFT respectively. All of these transforms act essentially
the same way, by converting a signal in time to an equivalent signal in frequency (sinu-
soids). However, depending on the nature of a speci�c signal i.e. whether it is �nite- or
in�nite-length and whether it is discrete- or continuous-time) there is an appropriate trans-
form to convert the signal into the frequency domain. Below is a table of the four Fourier
transforms and when each is appropriate. It also includes the relevant convolution for the
speci�ed space.

Table of Fourier Representations

Transform Time Domain Frequency Domain Convolution
Continuous-Time Fourier Series L2 ([0, T)) l2 (Z) Continuous-Time Circular

Continuous-Time Fourier Transform L2 (R) L2 (R) Continuous-Time Linear
Discrete-Time Fourier Transform l2 (Z) L2 ([0, 2π)) Discrete-Time Linear

Discrete Fourier Transform l2 ([0, N − 1]) l2 ([0, N − 1]) Discrete-Time Circular

1.10 Continuous-Time Fourier Transform (CTFT)
1.10.1 Introduction
Due to the large number of continuous-time signals that are present, the Fourier series26
provided us the �rst glimpse of how me we may represent some of these signals in a general
manner: as a superposition of a number of sinusoids. Now, we can look at a way to
represent continuous-time nonperiodic signals using the same idea of superposition. Below
we will present the Continuous-Time Fourier Transform (CTFT), also referred to as
just the Fourier Transform (FT). Because the CTFT now deals with nonperiodic signals,
we must now �nd a way to include all frequencies in the general equations.
1.10.1.1 Equations
Continuous-Time Fourier Transform

21http://cnx.org/content/m0028/latest/
22http://cnx.org/content/m10088/latest/
23http://cnx.org/content/m10097/latest/
24http://cnx.org/content/m0502/latest/
25http://cnx.org/content/m10110/latest/
26http://cnx.org/content/m0039/latest/

35

Figure 1.23: Mapping L2 (R) in the time domain to L2 (R) in the frequency domain.

F (Ω) =
∫ ∞

−∞
f (t) e−(jΩt)dt (1.24)

Inverse CTFT
f (t) =

1
2π

∫ ∞

−∞
F (Ω) ejΩtdΩ (1.25)

warning: Do not be confused by notation - it is not uncommon to see the above
formula written slightly di�erent. One of the most common di�erences among
many professors is the way that the exponential is written. Above we used the
radial frequency variable Ω in the exponential, where Ω = 2πf , but one will often
see professors include the more explicit expression, j2πft, in the exponential. Click
here27 for an overview of the notation used in Connexion's DSP modules.
The above equations for the CTFT and its inverse come directly from the Fourier series

and our understanding of its coe�cients. For the CTFT we simply utilize integration rather
than summation to be able to express the aperiodic signals. This should make sense since
for the CTFT we are simply extending the ideas of the Fourier series to include nonperiodic
signals, and thus the entire frequency spectrum. Look at the Derivation of the Fourier
Transform28 for a more in depth look at this.
1.10.2 Relevant Spaces
The Continuous-Time Fourier Transform maps in�nite-length, continuous-time signals in
L2 to in�nite-length, continuous-frequency signals in L2. Review the Fourier Analysis (Sec-
tion 2.9) for an overview of all the spaces used in Fourier analysis.

For more information on the characteristics of the CTFT, please look at the module on
Properties of the Fourier Transform29.
1.10.3 Example Problems

Exercise 1.2:
Find the Fourier Transform (CTFT) of the function

f (t) =
{

e−(αt) if t ≥ 0
0 otherwise (1.26)

27http://cnx.org/content/m10161/latest/
28http://cnx.org/content/m0046/latest/
29http://cnx.org/content/m10100/latest/

36 CHAPTER 1. FOUNDATIONS

Figure 1.24: Mapping l2 (Z) in the time domain to L2 ([0, 2π)) in the frequency domain.

Exercise 1.3:
Find the inverse Fourier transform of the square wave de�ned as

X (Ω) =
{

1 if |Ω| ≤ M
0 otherwise (1.27)

1.11 Discrete-Time Fourier Transform (DTFT)
Discrete-Time Fourier Transform

X (ω) =
∞∑

n=−∞

(
x (n) e−(jωn)

) (1.28)

Inverse Discrete-Time Fourier Transform
x (n) =

1
2π

∫ 2π

0

X (ω) ejωndω (1.29)

1.11.1 Relevant Spaces
The Discrete-Time Fourier Transform 30maps in�nite-length, discrete-time signals in l2 to
�nite-length (or 2π-periodic), continuous-frequency signals in L2.

1.12 DFT as a Matrix Operation
1.12.1 Matrix Review
Recall:
• Vectors in RN :

x =

x0

x1

. . .
xN−1

 , xi ∈ R

30http://cnx.org/content/m10247/latest/

37

• Vectors in CN :
x =

x0

x1

. . .
xN−1

 , xi ∈ C

• Transposition:
1. transpose:

xT =
(

x0 x1 . . . xN−1

)
2. conjugate:

xH =
(

x0
∗ x1

∗ . . . xN−1
∗)

• Inner product31:
1. real:

xT y =
N−1∑
i=0

(xiyi)

2. complex:
xHy =

N−1∑
i=0

(xn
∗yn)

• Matrix Multiplication:

Ax =

a00 a01 . . . a0,N−1

a10 a11 . . . a1,N−1...
...

aN−1,0 aN−1,1 . . . aN−1,N−1

x0

x1

. . .
xN−1

 =

y0

y1

. . .
yN−1

yk =
N−1∑
n=0

(aknxn)

• Matrix Transposition:

AT =

a00 a10 . . . aN−1,0

a01 a11 . . . aN−1,1...
...

a0,N−1 a1,N−1 . . . aN−1,N−1

Matrix transposition involved simply swapping the rows with columns.

AH = AT ∗

The above equation is Hermitian transpose.[
AT
]
kn

= Ank[
AH
]
kn

= [A∗]nk

31http://cnx.org/content/m10755/latest/

38 CHAPTER 1. FOUNDATIONS

1.12.2 Representing DFT as Matrix Operation
Now let's represent the DFT32 in vector-matrix notation.

x =

x [0]
x [1]
. . .

x [N − 1]

X =

X [0]
X [1]
. . .

X [N − 1]

 ∈ CN

Here x is the vector of time samples and X is the vector of DFT coe�cients. How are x
and X related:

X [k] =
N−1∑
n=0

(
x [n] e−(j 2π

N kn)
)

where
akn =

(
e−(j 2π

N)
)kn

= WN
kn

so
X = Wx

where X is the DFT vector, W is the matrix and x the time domain vector.
Wkn =

(
e−(j 2π

N)
)kn

X = W

x [0]
x [1]
. . .

x [N − 1]

IDFT:

x [n] =
1
N

N−1∑
k=0

(
X [k]

(
ej 2π

N

)nk
)

where (
ej 2π

N

)nk

= WN
nk∗

WN
nk∗ is the matrix Hermitian transpose. So,

x =
1
N

WHX

where x is the time vector, 1
N WH is the inverse DFT matrix, and X is the DFT vector.

1.13 The FFT Algorithm
De�nition 1: FFT
(Fast Fourier Transform) An e�cient computational algorithm for computing
the DFT33.

32http://cnx.org/content/m10249/latest/
33http://cnx.org/content/m10249/latest/

39

Figure 1.25

Figure 1.26

1.13.1 The Fast Fourier Transform FFT
DFT can be expensive to compute directly

X [k] =
N−1∑
n=0

(
x [n] e−(j2π k

N n)
)

, 0 ≤ k ≤ N − 1

For each k, we must execute:
• N complex multiplies
• N − 1 complex adds

The total cost of direct computation of an N -point DFT is
• N2 complex multiplies
• N (N − 1) complex adds

How many adds and mults of real numbers are required?
This " O

(
N2
)" computation rapidly gets out of hand, as N gets large:

N 1 10 100 1000 106

N2 1 100 10,000 106 1012

The FFT provides us with a much more e�cient way of computing the DFT. The FFT
requires only " O (N logN)" computations to compute the N -point DFT.

N 10 100 1000 106

N2 100 10,000 106 1012

N log10N 10 200 3000 6× 106

How long is 1012µsec? More than 10 days! How long is 6× 106µsec?
The FFT and digital computers revolutionized DSP (1960 - 1980).

40 CHAPTER 1. FOUNDATIONS

1.13.2 How does the FFT work?
• The FFT exploits the symmetries of the complex exponentials WN

kn = e−(j 2π
N kn)

• WN
kn are called "twiddle factors"

Symmetry 1.1: Complex Conjugate Symmetry
WN

k(N−n) = WN
−(kn) = WN

kn∗

e−(j2π k
N (N−n)) = ej2π k

N n = e−(j2π k
N n)∗

Symmetry 1.2: Periodicity in n and k
WN

kn = WN
k(N+n) = WN

(k+N)n

e−(j 2π
N kn) = e−(j 2π

N k(N+n)) = e−(j 2π
N (k+N)n)

WN = e−(j 2π
N)

1.13.3 Decimation in Time FFT
• Just one of many di�erent FFT algorithms
• The idea is to build a DFT out of smaller and smaller DFTs by decomposing x [n] into

smaller and smaller subsequences.
• Assume N = 2m (a power of 2)

1.13.3.1 Derivation
N is even, so we can complete X [k] by separating x [n] into two subsequences each of length
N
2 .

x [n] →
{

N
2 if n = even
N
2 if n = odd

X [k] =
N−1∑
n=0

(
x [n]WN

kn
)

, 0 ≤ k ≤ N − 1

X [k] =
∑(

x [n]WN
kn
)

+
∑(

x [n]WN
kn
)

where 0 ≤ r ≤ N
2 − 1. So

X [k] =
∑N

2 −1
r=0

(
x [2r]WN

2kr
)

+
∑N

2 −1
r=0

(
x [2r + 1]WN

(2r+1)k
)

=
∑N

2 −1
r=0

(
x [2r]

(
WN

2
)kr
)

+ WN
k∑N

2 −1
r=0

(
x [2r + 1]

(
WN

2
)kr
) (1.30)

where WN
2 = e−(j 2π

N 2) = e
−

„
j 2π

N
2

«
= WN

2
. So

X [k] =

N
2 −1∑
r=0

(
x [2r]WN

2

kr
)

+ WN
k

N
2 −1∑
r=0

(
x [2r + 1]WN

2

kr
)

41

where∑N
2 −1

r=0

(
x [2r]WN

2

kr
) is N

2 -point DFT of even samples (G [k]) and∑N
2 −1

r=0

(
x [2r + 1]WN

2

kr
)

is N
2 -point DFT of odd samples (H [k]).

X [k] = G [k] + WN
kH [k] , 0 ≤ k ≤ N − 1

Decomposition of an N -point DFT as a sum of 2 N
2 -point DFTs.Why would we want to do this? Because it is more e�cient!

Recall: Cost to compute an N -point DFT is approximately N2 complex mults
and adds.

But decomposition into 2 N
2 -point DFTs + combination requires only(

N

2

)2

+
(

N

2

)2

+ N =
N2

2
+ N

where the �rst part is the number of complex mults and adds for N
2 -point DFT, G [k]. The

second part is the number of complex mults and adds for N
2 -point DFT, H [k]. The third

part is the number of complex mults and adds for combination. And the total is N2

2 + N
complex mults and adds.

Example 1.16: Savings
For N = 1000,

N2 = 106

N2

2
+ N =

106

2
+ 1000

Because 1000 is small compared to 500,000,
N2

2
+ N ≈ 106

2

So why stop here?! Keep decomposing. Break each of the N
2 -point DFTs into two

N
4 -point DFTs, etc.,We can keep decomposing:

N

21
=
{

N

2
,
N

4
,
N

8
, . . . ,

N

2m−1
,

N

2m

}
= 1

where
m = log2N = times

Computational cost: N -pt DFT [U+F577] two N
2 -pt DFTs. The cost is N2 → 2

(
N
2

)2
+N .

So replacing each N
2 -pt DFT with two N

4 -pt DFTs will reduce cost to

2

(
2
(

N

4

)2

+
N

2

)
+ N = 4

(
N

4

)2

+ 2N =
N2

22
+ 2N =

N2

2p
+ pN

As we keep going p = {3, 4, . . . ,m}, where m = log2N . We get the cost
N2

2log2N
+ N log2N =

N2

N
+ N log2N = N + N log2N

N + N log2N is the total number of complex adds and mults.
For large N , cost ≈ N log2N or " O (N log2N)", since (N log2N � N) for large N .
Note: Weird order of time samples

42 CHAPTER 1. FOUNDATIONS

Figure 1.27: N = 8 point FFT. Summing nodes Wn
k twiddle multiplication factors.

Figure 1.28: This is called "butter�ies."

Solutions to Exercises in Chapter 1
Solution to Exercise 1.1:
In order to represent x in terms of b0 and b1 we will follow the same steps we used in the
above example.

B =
(

1 2
3 0

)

B−1 =
(

0 1
2

1
3

−1
6

)

α = B−1x =
(

1
2
3

)
And now we can write x in terms of b0 and b1.

x = b0 +
2
3
b1

And we can easily substitute in our known values of b0 and b1 to verify our results.
Solution to Exercise 1.2:
In order to calculate the Fourier transform, all we need to use is Equation 1.24, complex
exponentials34, and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(jΩt)dt

=
∫∞
0

e−(αt)e−(jΩt)dt
=

∫∞
0

e(−t)(α+jΩ)dt
= 0− −1

α+jΩ

(1.31)

F (Ω) =
1

α + jΩ
(1.32)

34http://cnx.org/content/m10060/latest/

43

Solution to Exercise 1.3:
Here we will use Equation 1.25 to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M

−M
ejΩtdΩ

= 1
2π ejΩt|Ω,Ω=ejw

= 1
πt sin (Mt)

(1.33)

x (t) =
M

π

(
sinc

Mt

π

)
(1.34)

44 CHAPTER 1. FOUNDATIONS

Chapter 2

Sampling and Frequency Analysis

2.1 Introduction
Contents of Sampling chapter
• Introduction(Current module)
• Proof (Section 3.2)
• Illustrations (Section 3.3)
• Matlab Example (Section 3.4)
• Hold operation1
• System view (Section 3.5)
• Aliasing applet2
• Exercises3
• Table of formulas4

2.1.1 Why sample?
This section introduces sampling. Sampling is the necessary fundament for all digital signal
processing and communication. Sampling can be de�ned as the process of measuring an
analog signal at distinct points.

Digital representation of analog signals o�ers advantages in terms of
• robustness towards noise, meaning we can send more bits/s
• use of �exible processing equipment, in particular the computer
• more reliable processing equipment
• easier to adapt complex algorithms
1http://cnx.org/content/m11458/latest/
2http://cnx.org/content/m11448/latest/
3http://cnx.org/content/m11442/latest/
4http://cnx.org/content/m11450/latest/

45

46 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.1: Claude Elwood Shannon (1916-2001)

2.1.2 Claude E. Shannon
Claude Shannon5 has been called the father of information theory, mainly due to his land-
mark papers on the "Mathematical theory of communication"6. Harry Nyquist7 was the
�rst to state the sampling theorem in 1928, but it was not proven until Shannon proved it
21 years later in the paper "Communications in the presence of noise"8.

2.1.3 Notation
In this chapter we will be using the following notation
• Original analog signal x (t)

• Sampling frequency Fs

• Sampling interval Ts (Note that: Fs = 1
Ts
)

• Sampled signal xs (n). (Note that xs (n) = x (nTs))
• Real angular frequency Ω

• Digital angular frequency ω. (Note that: ω = ΩTs)

2.1.4 The Sampling Theorem
The Sampling theorem: When sampling an analog signal the sampling fre-
quency must be greater than twice the highest frequency component of the analog
signal to be able to reconstruct the original signal from the sampled version.
Finished? Have at look at: Proof (Section 3.2); Illustrations (Section 3.3); Matlab Exam-

ple (Section 3.4); Aliasing applet9; Hold operation10; System view (Section 3.5); Exercises11

2.2 Proof
Sampling theorem: In order to recover the signal x (t) from it's samples exactly,
it is necessary to sample x (t) at a rate greater than twice it's highest frequency
component.

5http://www.research.att.com/∼njas/doc/ces5.html
6http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
7http://www.wikipedia.org/wiki/Harry_Nyquist
8http://www.stanford.edu/class/ee104/shannonpaper.pdf
9http://cnx.org/content/m11448/latest/
10http://cnx.org/content/m11458/latest/
11http://cnx.org/content/m11442/latest/

47

2.2.1 Introduction
As mentioned earlier (pg 45), sampling is the necessary fundament when we want to apply
digital signal processing on analog signals.

Here we present the proof of the sampling theorem. The proof is divided in two. First
we �nd an expression for the spectrum of the signal resulting from sampling the original
signal x (t). Next we show that the signal x (t) can be recovered from the samples. Often
it is easier using the frequency domain when carrying out a proof, and this is also the case
here.
Key points in the proof
• We �nd an equation (Equation 2.8) for the spectrum of the sampled signal
• We �nd a simple method to reconstruct (Equation 2.14) the original signal
• The sampled signal has a periodic spectrum...
• ...and the period is 2πFs

2.2.2 Proof part 1 - Spectral considerations
By sampling x (t) every Ts second we obtain xs (n). The inverse fourier transform of this
time discrete signal12 is

xs (n) =
1
2π

∫ π

−π

Xs

(
ejω
)
ejωndω (2.1)

For convenience we express the equation in terms of the real angular frequency Ω using
ω = ΩTs. We then obtain

xs (n) =
Ts

2π

∫ π
Ts

−π
Ts

Xs

(
ejΩTs

)
ejΩTsndΩ (2.2)

The inverse fourier transform of a continuous signal is
x (t) =

1
2π

∫ ∞

−∞
X (jΩ) ejΩtdΩ (2.3)

From this equation we �nd an expression for x (nTs)

x (nTs) =
1
2π

∫ ∞

−∞
X (jΩ) ejΩnTsdΩ (2.4)

To account for the di�erence in region of integration we split the integration in Equation 2.4
into subintervals of length 2π

Ts
and then take the sum over the resulting integrals to obtain

the complete area.

x (nTs) =
1
2π

∞∑
k=−∞

(∫ (2k+1)π
Ts

(2k−1)π
Ts

X (jΩ) ejΩnTsdΩ

)
(2.5)

Then we change the integration variable, setting Ω = η + 2πk
Ts

x (nTs) =
1
2π

∞∑
k=−∞

(∫ π
Ts

−π
Ts

X

(
j

(
η +

2πk

Ts

))
ej(η+ 2πk

Ts
)nTsdη

)
(2.6)

12http://cnx.org/content/m11476/latest/

48 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

We obtain the �nal form by observing that ej2πkn = 1, reinserting η = Ω and multiplying
by Ts

Ts

x (nTs) =
Ts

2π

∫ π
Ts

−π
Ts

∞∑
k=−∞

(
1
Ts

X

(
j

(
Ω +

2πk

Ts

))
ejΩnTs

)
dΩ (2.7)

To make xs (n) = x (nTs) for all values of n, the integrands in Equation 2.2 and Equation 2.7
have to agreee, that is

Xs

(
ejΩTs

)
=

1
Ts

∞∑
k=−∞

(
X

(
j

(
Ω +

2πk

Ts

)))
(2.8)

This is a central result. We see that the digital spectrum consists of a sum of shifted versions
of the original, analog spectrum. Observe the periodicity!

We can also express this relation in terms of the digital angular frequency ω = ΩTs

Xs

(
ejω
)

=
1
Ts

∞∑
k=−∞

(
X

(
j
ω + 2πk

Ts

))
(2.9)

This concludes the �rst part of the proof. Now we want to �nd a reconstruction formula,
so that we can recover x (t) from xs (n).
2.2.3 Proof part II - Signal reconstruction
For a bandlimited (Figure 2.3) signal the inverse fourier transform is

x (t) =
1
2π

∫ π
Ts

−π
Ts

X (jΩ) ejΩtdΩ (2.10)

In the interval we are integrating we have: Xs

(
ejΩTs

)
= X(jΩ)

Ts
. Substituting this relation

into Equation 2.10 we get
x (t) =

Ts

2π

∫ π
Ts

−π
Ts

Xs

(
ejΩTs

)
ejΩtdΩ (2.11)

Using the DTFT13 relation for Xs

(
ejΩTs

) we have
x (t) =

Ts

2π

∫ π
Ts

−π
Ts

∞∑
n=−∞

(
xs (n) e−(jΩnTs)ejΩt

)
dΩ (2.12)

Interchanging integration and summation (under the assumption of convergence) leads to

x (t) =
Ts

2π

∞∑
n=−∞

(
xs (n)

∫ π
Ts

−π
Ts

ejΩ(t−nTs)dΩ

)
(2.13)

Finally we perform the integration and arrive at the important reconstruction formula

x (t) =
∞∑

n=−∞

xs (n)
sin
(

π
Ts

(t− nTs)
)

π
Ts

(t− nTs)

 (2.14)

(Thanks to R.Loos for pointing out an error in the proof.)
13http://cnx.org/content/m11450/latest/

49

2.2.4 Summary
spectrum sampled signal: Xs

(
ejΩTs

)
= 1

Ts

∑∞
k=−∞

(
X
(
j
(
Ω + 2πk

Ts

)))

Reconstruction formula: x (t) =
∑∞

n=−∞

(
xs (n)

sin(π
Ts

(t−nTs))
π

Ts
(t−nTs)

)
Go to Introduction (Section 3.1); Illustrations (Section 3.3); Matlab Example (Sec-

tion 3.4); Hold operation14; Aliasing applet15; System view (Section 3.5); Exercises16 ?

2.3 Illustrations
In this module we illustrate the processes involved in sampling and reconstruction. To see
how all these processes work together as a whole, take a look at the system view (Section 3.5).
In Sampling and reconstruction with Matlab (Section 3.4) we provide a Matlab script for
download. The matlab script shows the process of sampling and reconstruction live.

2.3.1 Basic examples
Example 2.1:
To sample an analog signal with 3000 Hz as the highest frequency component
requires sampling at 6000 Hz or above.

Example 2.2:
The sampling theorem can also be applied in two dimensions, i.e. for image analy-
sis. A 2D sampling theorem has a simple physical interpretation in image analysis:
Choose the sampling interval such that it is less than or equal to half of the smallest
interesting detail in the image.

2.3.2 The process of sampling
We start o� with an analog signal. This can for example be the sound coming from your
stereo at home or your friend talking.

The signal is then sampled uniformly. Uniform sampling implies that we sample every
Ts seconds. In Figure 2.2 we see an analog signal. The analog signal has been sampled
at times t = nTs. In signal processing it is often more convenient and easier to work
in the frequency domain. So let's look at at the signal in frequency domain, Figure 2.3.
For illustration purposes we take the frequency content of the signal as a triangle. (If you
Fourier transform the signal in Figure 2.2 you will not get such a nice triangle.) Notice that
the signal in Figure 2.3 is bandlimited. We can see that the signal is bandlimited because
X (jΩ) is zero outside the interval [−Ωg,Ωg]. Equivalentely we can state that the signal has
no angular frequencies above Ωg, corresponding to no frequencies above Fg = Ωg

2π .Now let's take a look at the sampled signal in the frequency domain. While proving
(Section 3.2) the sampling theorem we found the the spectrum of the sampled signal consists

14http://cnx.org/content/m11458/latest/
15http://cnx.org/content/m11448/latest/
16http://cnx.org/content/m11442/latest/

50 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.2: Analog signal, samples are marked with dots.

Figure 2.3: The spectrum X (jΩ).

51

Figure 2.4: The spectrum Xs. Sampling frequency is OK.

of a sum of shifted versions of the analog spectrum. Mathematically this is described by the
following equation:

Xs

(
ejΩTs

)
=

1
Ts

∞∑
k=−∞

(
X

(
j

(
Ω +

2πk

Ts

)))
(2.15)

2.3.2.1 Sampling fast enough
In Figure 2.4 we show the result of sampling x (t) according to the sampling theorem (Sec-
tion 2.1.4). This means that when sampling the signal in Figure 2.2/Figure 2.3 we use
Fs ≥ 2Fg. Observe in Figure 2.4 that we have the same spectrum as in Figure 2.3 for
Ω ∈ [−Ωg,Ωg], except for the scaling factor 1

Ts
. This is a consequence of the sampling fre-

quency. As mentioned in the proof (Key points in the proof) the spectrum of the sampled
signal is periodic with period 2πFs = 2π

Ts
.

So now we are, according to the sample theorem (Section 2.1.4), able to reconstruct the
original signal exactly. How we can do this will be explored further down under reconstruc-
tion (Section 2.3.3). But �rst we will take a look at what happens when we sample too
slowly.
2.3.2.2 Sampling too slowly
If we sample x (t) too slowly, that is Fs < 2Fg, we will get overlap between the repeated
spectra, see Figure 2.5. According to Equation 2.15 the resulting spectra is the sum of these.
This overlap gives rise to the concept of aliasing.

aliasing: If the sampling frequency is less than twice the highest frequency
component, then frequencies in the original signal that are above half the sampling
rate will be "aliased" and will appear in the resulting signal as lower frequencies.
The consequence of aliasing is that we cannot recover the original signal, so aliasing has

to be avoided. Sampling too slowly will produce a sequence xs (n) that could have orginated
from a number of signals. So there is no chance of recovering the original signal. To learn
more about aliasing, take a look at this module17. (Includes an applet for demonstration!)

To avoid aliasing we have to sample fast enough. But if we can't sample fast enough
(possibly due to costs) we can include an Anti-Aliasing �lter. This will not able us to get
an exact reconstruction but can still be a good solution.

17http://cnx.org/content/m11448/latest/

52 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.5: The spectrum Xs. Sampling frequency is too low.

Anti-Aliasing filter: Typically a low-pass �lter that is applied before sam-
pling to ensure that no components with frequencies greater than half the sample
frequency remain.

Example 2.3:
The stagecoach e�ect
In older western movies you can observe aliasing on a stagecoach when it starts
to roll. At �rst the spokes appear to turn forward, but as the stagecoach increase
its speed the spokes appear to turn backward. This comes from the fact that the
sampling rate, here the number of frames per second, is too low. We can view
each frame as a sample of an image that is changing continuously in time. (Applet
illustrating the stagecoach e�ect18)

2.3.3 Reconstruction
Given the signal in Figure 2.4 we want to recover the original signal, but the question is
how?

When there is no overlapping in the spectrum, the spectral component given by k = 0
(see Equation 2.15),is equal to the spectrum of the analog signal. This o�ers an oppurtunity
to use a simple reconstruction process. Remember what you have learned about �ltering.
What we want is to change signal in Figure 2.4 into that of Figure 2.3. To achieve this we
have to remove all the extra components generated in the sampling process. To remove the
extra components we apply an ideal analog low-pass �lter as shown in Figure 2.6 As we see
the ideal �lter is rectangular in the frequency domain. A rectangle in the frequency domain
corresponds to a sinc19 function in time domain (and vice versa).

Then we have reconstructed the original spectrum, and as we know if two signals are
identical in the frequency domain, they are also identical in the time domain. End of
reconstruction.

2.3.4 Conclusions
The Shannon sampling theorem requires that the input signal prior to sampling is band-
limited to at most half the sampling frequency. Under this condition the samples give an

18http://�owers.ofthenight.org/wagonWheel/wagonWheel.html
19http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html

53

Figure 2.6: H (jΩ) The ideal reconstruction �lter.

exact signal representation. It is truly remarkable that such a broad and useful class signals
can be represented that easily!

We also looked into the problem of reconstructing the signals form its samples. Again
the simplicity of the principle is striking: linear �ltering by an ideal low-pass �lter will do
the job. However, the ideal �lter is impossible to create, but that is another story...

Go to? Introduction (Section 3.1); Proof (Section 3.2); Illustrations (Section 3.3); Matlab
Example (Section 3.4); Aliasing applet20; Hold operation21; System view (Section 3.5);
Exercises22

2.4 Sampling and Reconstruction with Matlab
2.4.1 Matlab �les
Samprecon.m23

Introduction (Section 3.1); Proof (Section 3.2); Illustrations (Section 3.3); Aliasing ap-
plet24; Hold operation (Section 3.4); System view (Section 3.5); Exercises25

2.5 Systems View of Sampling and Reconstruction
2.5.1 Ideal reconstruction system
Figure 2.7 shows the ideal reconstruction system based on the results of the Sampling
theorem proof (Section 3.2).

Figure 2.7 consists of a sampling device which produces a time-discrete sequence xs (n).
The reconstruction �lter, h (t), is an ideal analog sinc26 �lter, with h (t) = sinc

(
t

Ts

). We
can't apply the time-discrete sequence xs (n) directly to the analog �lter h (t). To solve
this problem we turn the sequence into an analog signal using delta functions27. Thus we
write xs (t) =

∑∞
n=−∞ (xs (n) δ (t− nT)). But when will the system produce an output

x̂ (t) = x (t)? According to the sampling theorem (Section 2.1.4) we have x̂ (t) = x (t) when
the sampling frequency, Fs, is at least twice the highest frequency component of x (t).

20http://cnx.org/content/m11448/latest/
21http://cnx.org/content/m11458/latest/
22http://cnx.org/content/m11442/latest/
23http://cnx.rice.edu/content/m11549/latest/Samprecon.m
24http://cnx.org/content/m11448/latest/
25http://cnx.org/content/m11442/latest/
26http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
27http://cnx.org/content/m11450/latest/

54 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.7: Ideal reconstruction system

Figure 2.8: Ideal reconstruction system with anti-aliasing �lter (pg 51)

2.5.2 Ideal system including anti-aliasing
To be sure that the reconstructed signal is free of aliasing it is customary to apply a lowpass
�lter, an anti-aliasing �lter (pg 51), before sampling as shown in Figure 2.8. Again we
ask the question of when the system will produce an output x̂ (t) = s (t)? If the signal is
entirely con�ned within the passband of the lowpass �lter we will get perfect reconstruction
if Fs is high enough.

But if the anti-aliasing �lter removes the "higher" frequencies, (which in fact is the job
of the anti-aliasing �lter), we will never be able to exactly reconstruct the original signal,
s (t). If we sample fast enough we can reconstruct x (t), which in most cases is satisfying.

The reconstructed signal, x̂ (t), will not have aliased frequencies. This is essential for
further use of the signal.

2.5.3 Reconstruction with hold operation
To make our reconstruction system realizable there are many things to look into. Among
them are the fact that any practical reconstruction system must input �nite length pulses
into the reconstruction �lter. This can be accomplished by the hold operation28. To alleviate
the distortion caused by the hold opeator we apply the output from the hold device to a
compensator. The compensation can be as accurate as we wish, this is cost and application
consideration. By the use of the hold component the reconstruction will not be exact,
but as mentioned above we can get as close as we want. Introduction (Section 3.1); Proof
(Section 3.2); Illustrations (Section 3.3); Matlab example (Section 3.4); Hold operation30;

28http://cnx.org/content/m11458/latest/
30http://cnx.org/content/m11458/latest/

Figure 2.9: More practical reconstruction system with a hold component29

55

Aliasing applet31; Exercises32

2.6 Sampling CT Signals: A Frequency Domain Perspec-
tive
2.6.1 Understanding Sampling in the Frequency Domain
We want to relate xc (t) directly to x [n]. Compute the CTFT of

xs (t) =
∞∑

n=−∞
(xc (nT) δ (t− nT))

Xs (Ω) =
∫∞
−∞

(∑∞
n=−∞ (xc (nT) δ (t− nT))

)
e(−j)Ωtdt

=
∑∞

n=−∞

(
xc (nT)

∫∞
−∞ δ (t− nT) e(−j)Ωtdt

)
=

∑∞
n=−∞

(
x [n] e(−j)ΩnT

)
=

∑∞
n=−∞

(
x [n] e(−j)ωn

)
= X (ω)

(2.16)

where ω ≡ ΩT and X (ω) is the DTFT of x [n].
Recall:

Xs (Ω) =
1
T

∞∑
k=−∞

(Xc (Ω− kΩs))

X (ω) = 1
T

∑∞
k=−∞ (Xc (Ω− kΩs))

= 1
T

∑∞
k=−∞

(
Xc

(
ω−2πk

T

)) (2.17)
where this last part is 2π-periodic.
2.6.1.1 Sampling

Example 2.4: Speech
Speech is intelligible if bandlimited by a CT lowpass �lter to the band ±4 kHz.
We can sample speech as slowly as _____?

2.6.2 Relating x[n] to sampled x(t)
Recall the following equality:

xs (t) =
∑

n

(x (nT) δ (t− nT))

Recall the CTFT relation: (
x (αt) ↔ 1

α
X

(
Ω
α

))
(2.18)

where α is a scaling of time and 1
α is a scaling in frequency.

Xs (Ω) ≡ X (ΩT) (2.19)
31http://cnx.org/content/m11448/latest/
32http://cnx.org/content/m11442/latest/

56 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.10

Figure 2.11

57

Figure 2.12: Note that there is no mention of T or Ωs!

2.7 The DFT: Frequency Domain with a Computer Anal-
ysis
2.7.1 Introduction
We just covered ideal (and non-ideal) (time) sampling of CT signals (Section 3.6). This
enabled DT signal processing solutions for CT applications (Figure 2.14):

Much of the theoretical analysis of such systems relied on frequency domain representa-
tions. How do we carry out these frequency domain analysis on the computer? Recall the
following relationships:

x [n] DTFT↔ X (ω)

x (t) CTFT↔ X (Ω)

where ω and Ω are continuous frequency variables.

2.7.1.1 Sampling DTFT
Consider the DTFT of a discrete-time (DT) signal x [n]. Assume x [n] is of �nite duration
N (i.e., an N -point signal).

X (ω) =
N−1∑
n=0

(
x [n] e(−j)ωn

) (2.20)

where X (ω) is the continuous function that is indexed by the real-valued parameter −π ≤
ω ≤ π. The other function, x [n], is a discrete function that is indexed by integers.

58 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.13

Figure 2.14

59

Finite Duration DT Signal

Figure 2.15

Sample X(ω)

Figure 2.16

We want to work with X (ω) on a computer. Why not just sample X (ω)?
X [k] = X

(
2π
N k
)

=
∑N−1

n=0

(
x [n] e(−j)2π k

N n
) (2.21)

In Equation 2.21 we sampled at ω = 2π
N k where k = {0, 1, . . . , N − 1} and X [k] for k =

{0, . . . , N − 1} is called the Discrete Fourier Transform (DFT) of x [n].
Example 2.5:
The DTFT of the image in Figure 2.15 is written as follows:

X (ω) =
N−1∑
n=0

(
x [n] e(−j)ωn

) (2.22)

where ω is any 2π-interval, for example −π ≤ ω ≤ π.
where again we sampled at ω = 2π

N k where k = {0, 1, . . . ,M − 1}. For example,
we take

M = 10

. In the following section (Section 2.7.1.1.1) we will discuss in more detail how we
should choose M , the number of samples in the 2π interval.
(This is precisely how we would plot X (ω) in Matlab.)

2.7.1.1.1 Choosing M
2.7.1.1.1.1 Case 1
Given N (length of x [n]), choose (M � N) to obtain a dense sampling of the DTFT (Fig-
ure 2.17):
2.7.1.1.1.2 Case 2
Choose M as small as possible (to minimize the amount of computation).

In general, we require M ≥ N in order to represent all information in
x [n] , n = {0, . . . , N − 1}

60 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.17

Let's concentrate on M = N :
x [n] DFT↔ X [k]

for n = {0, . . . , N − 1} and k = {0, . . . , N − 1}

numbers ↔ N numbers

2.7.2 Discrete Fourier Transform (DFT)
De�ne

X [k] ≡ X

(
2πk

N

)
(2.23)

where N = length (x [n]) and k = {0, . . . , N − 1}. In this case, M = N .
DFT

X [k] =
N−1∑
n=0

(
x [n] e(−j)2π k

N n
) (2.24)

Inverse DFT (IDFT)

x [n] =
1
N

N−1∑
k=0

(
X [k] ej2π k

N n
) (2.25)

2.7.2.1 Interpretation
Represent x [n] in terms of a sum of N complex sinusoids33 of amplitudes X [k] and frequen-
cies

ωk =
2πk

N
, k ∈ {0, . . . , N − 1}

Think: Fourier Series with fundamental frequency 2π
N

33http://cnx.org/content/m10060/latest/

61

Figure 2.18

2.7.2.1.1 Remark 1
IDFT treats x [n] as though it were N -periodic.

x [n] =
1
N

N−1∑
k=0

(
X [k] ej2π k

N n
) (2.26)

where n ∈ {0, . . . , N − 1}

Exercise 2.1:
What about other values of n?

2.7.2.1.2 Remark 2
Proof that the IDFT inverts the DFT for n ∈ {0, . . . , N − 1}

1
N

∑N−1
k=0

(
X [k] ej2π k

N n
)

= 1
N

∑N−1
k=0

(∑N−1
m=0

(
x [m] e(−j)2π k

N mej2π k
N n
))

= ???
(2.27)

Example 2.6: Computing DFT
Given the following discrete-time signal (Figure 2.18) with N = 4, we will compute
the DFT using two di�erent methods (the DFT Formula and Sample DTFT):

1.DFT Formula
X [k] =

∑N−1
n=0

(
x [n] e(−j)2π k

N n
)

= 1 + e(−j)2π k
4 + e(−j)2π k

4 2 + e(−j)2π k
4 3

= 1 + e(−j) π
2 k + e(−j)πk + e(−j) 3

2 πk

(2.28)

Using the above equation, we can solve and get the following results:
x [0] = 4

x [1] = 0

x [2] = 0

x [3] = 0

62 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.19

2.Sample DTFT. Using the same �gure, Figure 2.18, we will take the DTFT of
the signal and get the following equations:

X (ω) =
∑3

n=0

(
e(−j)ωn

)
= 1−e(−j)4ω

1−e(−j)ω

= ???
(2.29)

Our sample points will be:
ωk =

2πk

4
=

π

2
k

where k = {0, 1, 2, 3} (Figure 2.19).

2.7.3 Periodicity of the DFT
DFT X [k] consists of samples of DTFT, so X (ω), a 2π-periodic DTFT signal, can be
converted to X [k], an N -periodic DFT.

X [k] =
N−1∑
n=0

(
x [n] e(−j)2π k

N n
) (2.30)

where e(−j)2π k
N n is an N -periodic basis function (See Figure 2.20).

Also, recall,
x [n] = 1

N

∑N−1
n=0

(
X [k] ej2π k

N n
)

= 1
N

∑N−1
n=0

(
X [k] ej2π k

N (n+mN)
)

= ???

(2.31)

Example 2.7: Illustration
note: When we deal with the DFT, we need to remember that, in e�ect,
this treats the signal as an N -periodic sequence.

63

Figure 2.20

Figure 2.21

64 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.22

2.7.4 A Sampling Perspective
Think of sampling the continuous function X (ω), as depicted in Figure 2.22. S (ω) will
represent the sampling function applied to X (ω) and is illustrated in Figure 2.22 as well.
This will result in our discrete-time sequence, X [k].

Recall: Remember the multiplication in the frequency domain is equal to con-
volution in the time domain!

2.7.4.1 Inverse DTFT of S(ω)
∞∑

k=−∞

(
δ

(
ω − 2πk

N

))
(2.32)

65

Figure 2.23

Given the above equation, we can take the DTFT and get the following equation:
N

∞∑
m=−∞

(δ [n−mN]) ≡ S [n] (2.33)

Exercise 2.2:
Why does Equation 2.33 equal S [n]?
So, in the time-domain we have (Figure 2.23):

2.7.5 Connections
Combine signals in Figure 2.24 to get signals in Figure 2.25.

2.8 Discrete-Time Processing of CT Signals
2.8.1 DT Processing of CT Signals
2.8.1.1 Analysis

Yc (Ω) = HLP (Ω) Y (ΩT) (2.34)
where we know that Y (ω) = X (ω) G (ω) and G (ω) is the frequency response of the DT
LTI system. Also, remember that

ω ≡ ΩT

So,
Yc (Ω) = HLP (Ω) G (ΩT) X (ΩT) (2.35)

where Yc (Ω) and HLP (Ω) are CTFTs and G (ΩT) and X (ΩT) are DTFTs.

66 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.24

Figure 2.25

67

DSP System

Figure 2.26

Figure 2.27

Recall:

X (ω) =
2π

T

∞∑
k=−∞

(
Xc

(
ω − 2πk

T

))
OR

X (ΩT) =
2π

T

∞∑
k=−∞

(Xc (Ω− kΩs))

Therefore our �nal output signal, Yc (Ω), will be:

Yc (Ω) = HLP (Ω) G (ΩT)

(
2π

T

∞∑
k=−∞

(Xc (Ω− kΩs))

)
(2.36)

Now, if Xc (Ω) is bandlimited to [− (Ωs

2

)
, Ωs

2

] and we use the usual lowpass reconstruction
�lter in the D/A, Figure 2.27:

Then,
Yc (Ω) =

{
G (ΩT)Xc (Ω) if |Ω| < Ωs

2
0 otherwise (2.37)

68 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.28

2.8.1.2 Summary
For bandlimited signals sampled at or above the Nyquist rate, we can relate the input and
output of the DSP system by:

Yc (Ω) = Geff (Ω) Xc (Ω) (2.38)
where

Geff (Ω) =
{

G (ΩT) if |Ω| < Ωs

2
0 otherwise

2.8.1.2.1 Note
Geff (Ω) is LTI if and only if the following two conditions are satis�ed:

1. G (ω) is LTI (in DT).
2. Xc (T) is bandlimited and sampling rate equal to or greater than Nyquist. For exam-

ple, if we had a simple pulse described by
Xc (t) = u (t− T0)− u (t− T1)

where T1 > T0. If the sampling period T > T1 − T0, then some samples might "miss"
the pulse while others might not be "missed." This is what we term time-varying
behavior.

69

Figure 2.29

Example 2.8:
If 2π

T > 2B and ω1 < BT , determine and sketch Yc (Ω) using Figure 2.29.

2.8.2 Application: 60Hz Noise Removal
Unfortunately, in real-world situations electrodes also pick up ambient 60 Hz signals from
lights, computers, etc.. In fact, usually this "60 Hz noise" is much greater in amplitude
than the EKG signal shown in Figure 2.30. Figure 2.31 shows the EKG signal; it is barely
noticeable as it has become overwhelmed by noise.
2.8.2.1 DSP Solution
2.8.2.2 Sampling Period/Rate
First we must note that |Y (Ω) | is bandlimited to ±60 Hz. Therefore, the minimum rate
should be 120 Hz. In order to get the best results we should set

fs = 240Hz

.
Ωs = 2π

(
240

rad
s

)

2.8.2.3 Digital Filter
Therefore, we want to design a digital �lter that will remove the 60Hz component and
preserve the rest.

70 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.30

Figure 2.31: Our EKG signal, y (t), is overwhelmed by noise.

Figure 2.32

71

Figure 2.33

Figure 2.34

Figure 2.35

72 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.9 Short Time Fourier Transform
2.9.1 Short Time Fourier Transform
The Fourier transforms (FT, DTFT, DFT, etc.) do not clearly indicate how the frequency
content of a signal changes over time.

That information is hidden in the phase - it is not revealed by the plot of the magnitude
of the spectrum.

Note: To see how the frequency content of a signal changes over time, we can
cut the signal into blocks and compute the spectrum of each block.

To improve the result,
1. blocks are overlapping
2. each block is multiplied by a window that is tapered at its endpoints.

Several parameters must be chosen:
• Block length, R.
• The type of window.
• Amount of overlap between blocks. (Figure 2.36)
• Amount of zero padding, if any.
The short-time Fourier transform is de�ned as

X (ω, m) = (STFT (x (n)) [U+2254]DTFT (x (n−m)w (n)))
=

∑∞
n=−∞

(
x (n−m) w (n) e−(jωn)

)
=

∑R−1
n=0

(
x (n−m)w (n) e−(jωn)

) (2.39)

where w (n) is the window function of length R.
1. The STFT of a signal x (n) is a function of two variables: time and frequency.
2. The block length is determined by the support of the window function w (n).
3. A graphical display of the magnitude of the STFT, |X (ω, m) |, is called the spectro-
gram of the signal. It is often used in speech processing.

4. The STFT of a signal is invertible.
5. One can choose the block length. A long block length will provide higher frequency

resolution (because the main-lobe of the window function will be narrow). A short
block length will provide higher time resolution because less averaging across samples
is performed for each STFT value.

6. A narrow-band spectrogram is one computed using a relatively long block length
R, (long window function).

7. A wide-band spectrogram is one computed using a relatively short block length R,
(short window function).

73

STFT: Overlap Parameter

Figure 2.36

74 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

2.9.1.1 Sampled STFT
To numerically evaluate the STFT, we sample the frequency axis ω in N equally spaced
samples from ω = 0 to ω = 2π.

ωk =
2π

N
k , 0 ≤ k ≤ N − 1 (2.40)

We then have the discrete STFT,(
Xd (k, m) [U+2254]X

(
2π
N k,m

))
=

∑R−1
n=0

(
x (n−m) w (n) e−(jωn)

)
=

∑R−1
n=0

(
x (n−m) w (n) WN

−(kn)
)

= DFTN

(
x (n−m) w (n) |R−1

n=0 , 0,. . . 0) (2.41)

where 0,. . . 0 is N −R.
In this de�nition, the overlap between adjacent blocks is R − 1. The signal is shifted

along the window one sample at a time. That generates more points than is usually needed,
so we also sample the STFT along the time direction. That means we usually evaluate

Xd (k, Lm)

where L is the time-skip. The relation between the time-skip, the number of overlapping
samples, and the block length is

Overlap = R− L

Exercise 2.3:
Match each signal to its spectrogram in Figure 2.37.

2.9.1.2 Spectrogram Example
The matlab program for producing the �gures above (Figure 2.38 and Figure 2.39).

% LOAD DATA

load mtlb;

x = mtlb;

figure(1), clf

plot(0:4000,x)

xlabel('n')

ylabel('x(n)')

% SET PARAMETERS

R = 256; % R: block length

window = hamming(R); % window function of length R

N = 512; % N: frequency discretization

L = 35; % L: time lapse between blocks

fs = 7418; % fs: sampling frequency

overlap = R - L;

75

(a)

(b)

Figure 2.37

76 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.38

Figure 2.39

77

% COMPUTE SPECTROGRAM

[B,f,t] = specgram(x,N,fs,window,overlap);

% MAKE PLOT

figure(2), clf

imagesc(t,f,log10(abs(B)));

colormap('jet')

axis xy

xlabel('time')

ylabel('frequency')

title('SPECTROGRAM, R = 256')

2.9.1.3 E�ect of window length R
Here is another example to illustrate the frequency/time resolution trade-o� (See �gures -
Figure 2.40, Figure 2.41, and Figure 2.42).
2.9.1.4 E�ect of L and N
A spectrogram is computed with di�erent parameters:

L ∈ {1, 10}

N ∈ {32, 256}

• L = time lapse between blocks.
• N = FFT length (Each block is zero-padded to length N .)

In each case, the block length is 30 samples.
Exercise 2.4:
For each of the four spectrograms in Figure 2.43 can you tell what L and N are?

L and N do not e�ect the time resolution or the frequency resolution. They only a�ect
the 'pixelation'.
2.9.1.5 E�ect of R and L
Shown below are four spectrograms of the same signal. Each spectrogram is computed using
a di�erent set of parameters.

R ∈ {120, 256, 1024}

L ∈ {35, 250}

where
• R = block length
• L = time lapse between blocks.

78 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Narrow-band spectrogram: better frequency resolution

Figure 2.40

79

Wide-band spectrogram: better time resolution

Figure 2.41

80 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

E�ect of Window Length R

(a)

(b)

Figure 2.42

81

(a)

(b)

Figure 2.43

82 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.44

83

Figure 2.45

Exercise 2.5:
For each of the four spectrograms in Figure 2.44, match the above values of L and
R.
If you like, you may listen to this signal with the soundsc command; the data is in the

�le: stft_data.m. Here (Figure 2.45) is a �gure of the signal.

2.10 Spectrograms
We know how to acquire analog signals for digital processing (pre-�ltering34, sampling35,
and A/D conversion36) and to compute spectra of discrete-time signals (using the FFT
algorithm37), let's put these various components together to learn how the spectrogram
shown in Figure 2.46, which is used to analyze speech38, is calculated. The speech was
sampled at a rate of 11.025 kHz and passed through a 16-bit A/D converter.

point of interest: Music compact discs (CDs) encode their signals at a sam-
pling rate of 44.1 kHz. We'll learn the rationale for this number later. The 11.025
kHz sampling rate for the speech is 1/4 of the CD sampling rate, and was the low-
est available sampling rate commensurate with speech signal bandwidths available
on my computer.

Exercise 2.6:
Looking at Figure 2.46 the signal lasted a little over 1.2 seconds. How long was the
sampled signal (in terms of samples)? What was the datarate during the sampling
process in bps (bits per second)? Assuming the computer storage is organized in
terms of bytes (8-bit quantities), how many bytes of computer memory does the
speech consume?

34http://cnx.org/content/m0050/latest/#�ve
35http://cnx.org/content/m0050/latest/
36http://cnx.org/content/m0051/latest/
37http://cnx.org/content/m10250/latest/
38http://cnx.org/content/m0049/latest/

84 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

speech spectrogram

Time (s)

F
re

q
u

e
n

c
y
 (

H
z
)

0 0.2 0.4 0.6 0.8 1 1.2
0

1000

2000

3000

4000

5000

Ri ce Uni ver si ty

Figure 2.46

85

Spectrogram Hanning vs. Rectangular
256

FFT (512)

Rectangular
Window

f

Hanning
Window

FFT (512)

n

f

Figure 2.47: The top waveform is a segment 1024 samples long taken from the begin-ning of the "Rice University" phrase. Computing Figure 2.46 involved creating frames,here demarked by the vertical lines, that were 256 samples long and �nding the spectrumof each. If a rectangular window is applied (corresponding to extracting a frame from thesignal), oscillations appear in the spectrum (middle of bottom row). Applying a Hanningwindow gracefully tapers the signal toward frame edges, thereby yielding a more accuratecomputation of the signal's spectrum at that moment of time.

The resulting discrete-time signal, shown in the bottom of Figure 2.46, clearly changes
its character with time. To display these spectral changes, the long signal was sectioned
into frames: comparatively short, contiguous groups of samples. Conceptually, a Fourier
transform of each frame is calculated using the FFT. Each frame is not so long that signi�-
cant signal variations are retained within a frame, but not so short that we lose the signal's
spectral character.

An important detail emerges when we examine each framed signal (Figure 2.47). At the
frame's edges, the signal may change very abruptly, a feature not present in the original
signal. A transform of such a segment reveals a curious oscillation in the spectrum, an
artifact directly related to this sharp amplitude change. A better way to frame signals for
spectrograms is to apply a window: Shape the signal values within a frame so that the
signal decays gracefully as it nears the edges. This shaping is accomplished by multiplying
the framed signal by the sequence w (n). In sectioning the signal, we essentially applied
a rectangular window: w (n) = 1, 0 ≤ n ≤ N − 1. A much more graceful window is
the Hanning window; it has the cosine shape w (n) = 1

2

(
1− cos

(
2πn
N

)). As shown in
Figure 2.47, this shaping greatly reduces spurious oscillations in each frame's spectrum.
Considering the spectrum of the Hanning windowed frame, we �nd that the oscillations

86 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Hanning speech

n

n

Figure 2.48: In comparison with the original speech segment shown in the upper plot,the non-overlapped Hanning windowed version shown below it is very ragged. Clearly,spectral information extracted from the bottom plot could well miss important featurespresent in the original.

resulting from applying the rectangular window obscured a formant (the one located at a
little more than half the Nyquist frequency).

Exercise 2.7:
What might be the source of these oscillations? To gain some insight, what is the
length- 2N discrete Fourier transform of a length-N pulse? The pulse emulates
the rectangular window, and certainly has edges. Compare your answer with the
length- 2N transform of a length- N Hanning window.
If you examine the windowed signal sections in sequence to examine windowing's af-

fect on signal amplitude, we see that we have managed to amplitude-modulate the signal
with the periodically repeated window (Figure 2.48). To alleviate this problem, frames are
overlapped (typically by half a frame duration). This solution requires more Fourier trans-
form calculations than needed by rectangular windowing, but the spectra are much better
behaved and spectral changes are much better captured.

Spectrograms, such as shown in the speech spectrogram (Figure 2.46), are sectioned into
overlapping, equal-length frames, with a Hanning window applied to each frame. The spectra
of each of these is calculated, and displayed in spectrograms with frequency extending
vertically, window time location running horizontally, and spectral magnitude color-coded.
Figure 2.49 illustrates these computations.

Exercise 2.8:
Why the speci�c values of 256 for N and 512 for K? Another issue is how was the
length-512 transform of each length-256 windowed frame computed?

2.11 Filtering with the DFT
2.11.1 Introduction

y [n] = x [n] ∗ h [n]
=

∑∞
k=−∞ (x [k]h [n− k]) (2.42)

87

Hanning windows
L

o
g

 S
p

e
c
tr

a
l
M

a
g

n
it
u

d
e

f

n

FFT FFT FFT FFT FFT FFT FFT

Figure 2.49: The original speech segment and the sequence of overlapping Hanningwindows applied to it are shown in the upper portion. Frames were 256 samples longand a Hanning window was applied with a half-frame overlap. A length-512 FFT of eachframe was computed, with the magnitude of the �rst 257 FFT values displayed vertically,with spectral amplitude values color-coded.

Figure 2.50

88 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.51

Y (ω) = X (ω) H (ω) (2.43)

Assume that H (ω) is speci�ed.

Exercise 2.9:
How can we implement X (ω) H (ω) in a computer?

Recall that the DFT treats N -point sequences as if they are periodically extended (Fig-
ure 2.51):

89

Figure 2.52

Figure 2.53: The above symbol for the circular convolution is for an N -periodicextension.

2.11.2 Compute IDFT of Y[k]
ỹ [n] = 1

N

∑N−1
k=0

(
Y [k] ej2π k

N n
)

= 1
N

∑N−1
k=0

(
X [k]H [k] ej2π k

N n
)

= 1
N

∑N−1
k=0

((∑N−1
m=0

(
x [m] e−(j2π k

N m)
))

H [k] ej2π k
N n
)

=
∑N−1

m=0

(
x [m]

(
1
N

∑N−1
k=0

(
H [k] ej2π k

N (n−m)
)))

=
∑N−1

m=0 (x [m]h [((n−m))N])

(2.44)

And the IDFT periodically extends h [n]:
h̃ [n−m] = h [((n−m))N]

This computes as shown in Figure 2.52:

ỹ [n] =
N−1∑
m=0

(x [m]h [((n−m))N]) (2.45)

is called circular convolution and is denoted by Figure 2.53.

90 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.54

Figure 2.55

2.11.2.1 DFT Pair
Note that in general:

Example 2.9: Regular vs. Circular Convolution
To begin with, we are given the following two length-3 signals:

x [n] = {1, 2, 3}

h [n] = {1, 0, 2}

We can zero-pad these signals so that we have the following discrete sequences:
x [n] = {. . . , 0, 1, 2, 3, 0, . . . }

h [n] = {. . . , 0, 1, 0, 2, 0, . . . }

where x [0] = 1 and h [0] = 1.
• Regular Convolution:

y [n] =
2∑

m=0

(x [m]h [n−m]) (2.46)

Using the above convolution formula (refer to the link if you need a review
of convolution (Section 2.5)), we can calculate the resulting value for y [0] to
y [4]. Recall that because we have two length-3 signals, our convolved signal
will be length-5.
· n = 0

{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 2, 0, 1, 0, 0, 0, . . . }

y [0] = 1× 1 + 2× 0 + 3× 0
= 1 (2.47)

91

Regular Convolution Result

Figure 2.56: Result is �nite duration, not periodic!

· n = 1
{. . . , 0, 0, 1, 2, 3, 0, . . . }
{. . . , 0, 2, 0, 1, 0, 0, . . . }

y [1] = 1× 0 + 2× 1 + 3× 0
= 2 (2.48)

· n = 2
{. . . , 0, 1, 2, 3, 0, . . . }
{. . . , 0, 2, 0, 1, 0, . . . }

y [2] = 1× 2 + 2× 0 + 3× 1
= 5 (2.49)

· n = 3
y [3] = 4 (2.50)

· n = 4
y [4] = 6 (2.51)

• Circular Convolution:
ỹ [n] =

2∑
m=0

(x [m]h [((n−m))N]) (2.52)

And now with circular convolution our h [n] changes and becomes a periodi-
cally extended signal:

h [((n))N] = {. . . , 1, 0, 2, 1, 0, 2, 1, 0, 2, . . . } (2.53)

· n = 0
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }
{. . . , 1, 2, 0, 1, 2, 0, 1, . . . }

ỹ [0] = 1× 1 + 2× 2 + 3× 0
= 5 (2.54)

92 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Circular Convolution Result

Figure 2.57: Result is 3-periodic.

Circular Convolution from Regular

Figure 2.58: The left plot (the circular convolution results) has a "wrap-around" e�ectdue to periodic extension.

· n = 1
{. . . , 0, 0, 0, 1, 2, 3, 0, . . . }

{. . . , 0, 1, 2, 0, 1, 2, 0, . . . }

ỹ [1] = 1× 1 + 2× 1 + 3× 2
= 8 (2.55)

· n = 2
ỹ [2] = 5 (2.56)

· n = 3
ỹ [3] = 5 (2.57)

· n = 4
ỹ [4] = 8 (2.58)

Figure 2.58 illustrates the relationship between circular convolution and regular
convolution using the previous two �gures:

93

Figure 2.59: The sequence from 0 to 4 (the underlined part of the sequence) is theregular convolution result. From this illustration we can see that it is 5-periodic!

2.11.2.2 Regular Convolution from Periodic Convolution
1. "Zero-pad" x [n] and h [n] to avoid the overlap (wrap-around) e�ect. We will zero-pad

the two signals to a length-5 signal (5 being the duration of the regular convolution
result):

x [n] = {1, 2, 3, 0, 0}

h [n] = {1, 0, 2, 0, 0}

2. Now take the DFTs of the zero-padded signals:
ỹ [n] = 1

N

∑4
k=0

(
X [k]H [k] ej2π k

5 n
)

=
∑4

m=0 (x [m]h [((n−m))5])
(2.59)

Now we can plot this result (Figure 2.59):
General Result: We can compute the regular convolution result of a convolu-
tion of an M -point signal x [n] with an N -point signal h [n] by padding each signal
with zeros to obtain two M + N − 1 length sequences and computing the circular
convolution (or equivalently computing the IDFT of H [k]X [k], the product of the
DFTs of the zero-padded signals) (Figure 2.60).

2.11.3 DSP System
1. Sample �nite duration continuous-time input x (t) to get x [n] where n = {0, . . . ,M − 1}.
2. Zero-pad x [n] and h [n] to length M + N − 1.
3. Compute DFTs X [k] and H [k]

4. Compute IDFTs of X [k]H [k]
y [n] = ỹ [n]

where n = {0, . . . ,M + N − 1}.
5. Reconstruct y (t)

94 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.60: Note that the lower two images are simply the top images that have beenzero-padded.

Figure 2.61: The system has a length N impulse response, h [n]

95

Figure 2.62: Fourier Transform (FT) relationship between the two functions.

(a) (b)

Figure 2.63

2.12 Image Restoration Basics
2.12.1 Image Restoration
In many applications (e.g., satellite imaging, medical imaging, astronomical imaging, poor-
quality family portraits) the imaging system introduces a slight distortion. Often images
are slightly blurred and image restoration aims at deblurring the image.

The blurring can usually be modeled as an LSI system with a given PSF h [m,n].
The observed image is

g [m,n] = h [m,n] ∗ f [m,n] (2.60)

G (u, v) = H (u, v) F (u, v) (2.61)

F (u, v) =
G (u, v)
H (u, v)

(2.62)

Example 2.10: Image Blurring
Above we showed the equations for representing the common model for blurring
an image. In Figure 2.63 we have an original image and a PSF function that we
wish to apply to the image in order to model a basic blurred image.
Once we apply the PSF to the original image, we receive our blurred image that
is shown in Figure 2.64:

96 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Figure 2.64

2.12.1.1 Frequency Domain Analysis
Example 2.10 looks at the original images in its typical form; however, it is often useful to
look at our images and PSF in the frequency domain. In Figure 2.65, we take another look
at the image blurring example above and look at how the images and results would appear
in the frequency domain if we applied the fourier transforms.

97

Figure 2.65

98 CHAPTER 2. SAMPLING AND FREQUENCY ANALYSIS

Solutions to Exercises in Chapter 2
Solution to Exercise 2.1:

x [n + N] = ???

Solution to Exercise 2.2:
S [n] is N -periodic, so it has the following Fourier Series39:

ck = 1
N

∫ N
2

−(N
2) δ [n] e(−j)2π k

N ndn

= 1
N

(2.63)

S [n] =
∞∑

k=−∞

(
e(−j)2π k

N n
) (2.64)

where the DTFT of the exponential in the above equation is equal to δ
(
ω − 2πk

N

).
Solution to Exercise 2.3:
Solution to Exercise 2.4:
Solution to Exercise 2.5:
Solution to Exercise 2.6:
Number of samples equals 1.2 × 11025 = 13230. The datarate is 11025 × 16 = 176.4 kbps.
The storage required would be 26460 bytes.
Solution to Exercise 2.7:
The oscillations are due to the boxcar window's Fourier transform, which equals the sinc
function.
Solution to Exercise 2.8:
These numbers are powers-of-two, and the FFT algorithm can be exploited with these
lengths. To compute a longer transform than the input signal's duration, we simply zero-
pad the signal.
Solution to Exercise 2.9:
Discretize (sample) X (ω) and H (ω). In order to do this, we should take the DFTs of x [n]
and h [n] to get X [k] and X [k]. Then we will compute

ỹ [n] = IDFT (X [k]H [k])

Does ỹ [n] = y [n]?

39http://cnx.org/content/m10496/latest/

Chapter 3

Digital Filtering

3.1 Di�erence Equation
3.1.1 Introduction
One of the most important concepts of DSP is to be able to properly represent the in-
put/output relationship to a given LTI system. A linear constant-coe�cient di�erence
equation (LCCDE) serves as a way to express just this relationship in a discrete-time sys-
tem. Writing the sequence of inputs and outputs, which represent the characteristics of the
LTI system, as a di�erence equation help in understanding and manipulating a system.

De�nition 2: di�erence equation
An equation that shows the relationship between consecutive values of a sequence
and the di�erences among them. They are often rearranged as a recursive formula
so that a systems output can be computed from the input signal and past outputs.

Example:
y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (3.1)

3.1.2 General Formulas from the Di�erence Equation
As stated brie�y in the de�nition above, a di�erence equation is a very useful tool in describ-
ing and calculating the output of the system described by the formula for a given sample n.
The key property of the di�erence equation is its ability to help easily �nd the transform,
H (z), of a system. In the following two subsections, we will look at the general form of the
di�erence equation and the general conversion to a z-transform directly from the di�erence
equation.

3.1.2.1 Di�erence Equation
The general form of a linear, constant-coe�cient di�erence equation (LCCDE), is shown
below:

N∑
k=0

(aky [n− k]) =
M∑

k=0

(bkx [n− k]) (3.2)

99

100 CHAPTER 3. DIGITAL FILTERING

We can also write the general form to easily express a recursive output, which looks like
this:

y [n] = −

(
N∑

k=1

(aky [n− k])

)
+

M∑
k=0

(bkx [n− k]) (3.3)
From this equation, note that y [n− k] represents the outputs and x [n− k] represents the
inputs. The value of N represents the order of the di�erence equation and corresponds to
the memory of the system being represented. Because this equation relies on past values of
the output, in order to compute a numerical solution, certain past outputs, referred to as
the initial conditions, must be known.
3.1.2.2 Conversion to Z-Transform
Using the above formula, Equation 3.2, we can easily generalize the transfer function,
H (z), for any di�erence equation. Below are the steps taken to convert any di�erence
equation into its transfer function, i.e. z-transform. The �rst step involves taking the
Fourier Transform1 of all the terms in Equation 3.2. Then we use the linearity property to
pull the transform inside the summation and the time-shifting property of the z-transform to
change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (z) = −

(
N∑

k=1

(
akY (z) z−k

))
+

M∑
k=0

(
bkX (z) z−k

) (3.4)

H (z) = Y (z)
X(z)

=
PM

k=0(bkz−k)
1+

PN
k=1(akz−k)

(3.5)

3.1.2.3 Conversion to Frequency Response
Once the z-transform has been calculated from the di�erence equation, we can go one step
further to de�ne the frequency response of the system, or �lter, that is being represented
by the di�erence equation.

note: Remember that the reason we are dealing with these formulas is to be
able to aid us in �lter design. A LCCDE is one of the easiest ways to represent
FIR �lters. By being able to �nd the frequency response, we will be able to look
at the basic properties of any �lter represented by a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is
simple a matter of taking the z-transform formula, H (z), and replacing every instance of z
with ejw.

H (w) = H (z) |z,z=ejw

=
PM

k=0(bke−(jwk))PN
k=0(ake−(jwk))

(3.6)

Once you understand the derivation of this formula, look at the module concerning Filter
Design from the Z-Transform2 for a look into how all of these ideas of the Z-transform
(Section 4.2), Di�erence Equation, and Pole/Zero Plots (Section 4.4) play a role in �lter
design.

1http://cnx.org/content/m0046/latest/
2http://cnx.org/content/m10548/latest/

101

3.1.3 Example
Example 3.1: Finding Di�erence Equation
Below is a basic example showing the opposite of the steps above: given a transfer
function one can easily calculate the systems di�erence equation.

H (z) =
(z + 1)2(

z − 1
2

) (
z + 3

4

) (3.7)

Given this transfer function of a time-domain �lter, we want to �nd the di�erence
equation. To begin with, expand both polynomials and divide them by the highest
order z.

H (z) = (z+1)(z+1)

(z− 1
2)(z+ 3

4)
= z2+2z+1

z2+2z+1− 3
8

= 1+2z−1+z−2

1+ 1
4 z−1− 3

8 z−2

(3.8)

From this transfer function, the coe�cients of the two polynomials will be our akand bk values found in the general di�erence equation formula, Equation 3.2. Usingthese coe�cients and the above form of the transfer function, we can easily write
the di�erence equation:

x [n] + 2x [n− 1] + x [n− 2] = y [n] +
1
4
y [n− 1]− 3

8
y [n− 2] (3.9)

In our �nal step, we can rewrite the di�erence equation in its more common form
showing the recursive nature of the system.

y [n] = x [n] + 2x [n− 1] + x [n− 2] +
−1
4

y [n− 1] +
3
8
y [n− 2] (3.10)

3.1.4 Solving a LCCDE
In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI
system, we must be able to �nd the systems output based upon a known input, x (n), and
a set of initial conditions. Two common methods exist for solving a LCCDE: the direct
method and the indirect method, the later being based on the z-transform. Below we
will brie�y discuss the formulas for solving a LCCDE using each of these methods.

3.1.4.1 Direct Method
The �nal solution to the output based on the direct method is the sum of two parts, expressed
in the following equation:

y (n) = yh (n) + yp (n) (3.11)
The �rst part, yh (n), is referred to as the homogeneous solution and the second part,
yh (n), is referred to as particular solution. The following method is very similar to that
used to solve many di�erential equations, so if you have taken a di�erential calculus course
or used di�erential equations before then this should seem very familiar.

102 CHAPTER 3. DIGITAL FILTERING

3.1.4.1.1 Homogeneous Solution
We begin by assuming that the input is zero, x (n) = 0. Now we simply need to solve the
homogeneous di�erence equation:

N∑
k=0

(aky [n− k]) = 0 (3.12)

In order to solve this, we will make the assumption that the solution is in the form of an
exponential. We will use lambda, λ, to represent our exponential terms. We now have to
solve the following equation:

N∑
k=0

(
akλn−k

)
= 0 (3.13)

We can expand this equation out and factor out all of the lambda terms. This will give us
a large polynomial in parenthesis, which is referred to as the characteristic polynomial.
The roots of this polynomial will be the key to solving the homogeneous equation. If there
are all distinct roots, then the general solution to the equation will be as follows:

yh (n) = C1(λ1)
n + C2(λ2)

n + · · ·+ CN (λN)n (3.14)
However, if the characteristic equation contains multiple roots then the above general solu-
tion will be slightly di�erent. Below we have the modi�ed version for an equation where λ1has K multiple roots:
yh (n) = C1(λ1)

n +C1n(λ1)
n +C1n

2(λ1)
n + · · ·+C1n

K−1(λ1)
n +C2(λ2)

n + · · ·+CN (λN)n

(3.15)

3.1.4.1.2 Particular Solution
The particular solution, yp (n), will be any solution that will solve the general di�erence
equation:

N∑
k=0

(akyp (n− k)) =
M∑

k=0

(bkx (n− k)) (3.16)

In order to solve, our guess for the solution to yp (n) will take on the form of the input,
x (n). After guessing at a solution to the above equation involving the particular solution,
one only needs to plug the solution into the di�erence equation and solve it out.

3.1.4.2 Indirect Method
The indirect method utilizes the relationship between the di�erence equation and z-transform,
discussed earlier (Section 3.1.2), to �nd a solution. The basic idea is to convert the di�er-
ence equation into a z-transform, as described above (Section 3.1.2.2), to get the resulting
output, Y (z). Then by inverse transforming this and using partial-fraction expansion, we
can arrive at the solution.

103

3.2 The Z Transform: De�nition
3.2.1 Basic De�nition of the Z-Transform
The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞

(
x [n] z−n

) (3.17)

Sometimes this equation is referred to as the bilateral z-transform. At times the z-
transform is de�ned as

X (z) =
∞∑

n=0

(
x [n] z−n

) (3.18)

which is known as the unilateral z-transform.
There is a close relationship between the z-transform and the Fourier transform of a

discrete time signal, which is de�ned as

X
(
ejω
)

=
∞∑

n=−∞

(
x [n] e−(jωn)

) (3.19)

Notice that that when the z−n is replaced with e−(jωn) the z-transform reduces to the
Fourier Transform. When the Fourier Transform exists, z = ejω , which is to have the
magnitude of z equal to unity.

3.2.2 The Complex Plane
In order to get further insight into the relationship between the Fourier Transform and the
Z-Transform it is useful to look at the complex plane or z-plane. Take a look at the complex
plane:

The Z-plane is a complex plane with an imaginary and real axis referring to the complex-
valued variable z. The position on the complex plane is given by rejω , and the angle from
the positive, real axis around the plane is denoted by ω. X (z) is de�ned everywhere on this
plane. X

(
ejω
) on the other hand is de�ned only where |z| = 1, which is referred to as the

unit circle. So for example, ω = 1 at z = 1 and ω = π at z = −1. This is useful because, by
representing the Fourier transform as the z-transform on the unit circle, the periodicity of
Fourier transform is easily seen.

3.2.3 Region of Convergence
The region of convergence, known as the ROC, is important to understand because it
de�nes the region where the z-transform exists. The ROC for a given x [n] , is de�ned as the
range of z for which the z-transform converges. Since the z-transform is a power series, it
converges when x [n] z−n is absolutely summable. Stated di�erently,

∞∑
n=−∞

(
|x [n] z−n|

)
< ∞ (3.20)

must be satis�ed for convergence. This is best illustrated by looking at the di�erent ROC's
of the z-transforms of αnu [n] and αnu [n− 1].

104 CHAPTER 3. DIGITAL FILTERING

Z-Plane

Figure 3.1

Figure 3.2: x [n] = αnu [n] where α = 0.5.

105

Figure 3.3: ROC for x [n] = αnu [n] where α = 0.5

Example 3.2:
For

x [n] = αnu [n] (3.21)

X (z) =
∑∞

n=−∞ (x [n] z−n)
=

∑∞
n=−∞ (αnu [n] z−n)

=
∑∞

n=0 (αnz−n)
=

∑∞
n=0

((
αz−1

)n) (3.22)

This sequence is an example of a right-sided exponential sequence because it is
nonzero for n ≥ 0. It only converges when |αz−1| < 1. When it converges,

X (z) = 1
1−αz−1

= z
z−α

(3.23)

If |αz−1| ≥ 1, then the series, ∑∞
n=0

((
αz−1

)n) does not converge. Thus the ROC
is the range of values where

|αz−1| < 1 (3.24)
or, equivalently,

|z| > |α| (3.25)

Example 3.3:
For

x [n] = (− (αn))u [−n− 1] (3.26)

106 CHAPTER 3. DIGITAL FILTERING

Figure 3.4: x [n] = (− (αn)) u [−n− 1] where α = 0.5.

X (z) =
∑∞

n=−∞ (x [n] z−n)
=

∑∞
n=−∞ ((− (αn))u [−n− 1] z−n)

= −
(∑−1

n=−∞ (αnz−n)
)

= −
(∑−1

n=−∞

((
α−1z

)−n
))

= −
(∑∞

n=1

((
α−1z

)n))
= 1−

∑∞
n=0

((
α−1z

)n)
(3.27)

The ROC in this case is the range of values where
|α−1z| < 1 (3.28)

or, equivalently,
|z| < |α| (3.29)

If the ROC is satis�ed, then
X (z) = 1− 1

1−α−1z

= z
z−α

(3.30)

3.3 Table of Common z-Transforms
The table below provides a number of unilateral and bilateral z-transforms (Section 4.2).
The table also speci�es the region of convergence3.

3http://cnx.org/content/m10622/latest/

107

Figure 3.5: ROC for x [n] = (− (αn)) u [−n− 1]

note: The notation for z found in the table below may di�er from that found in
other tables. For example, the basic z-transform of u [n] can be written as either
of the following two expressions, which are equivalent:

z

z − 1
=

1
1− z−1

(3.31)

Signal Z-Transform ROC
δ [n− k] z−k Allz

u [n] z
z−1 |z| > 1

− (u [−n− 1]) z
z−1 |z| < 1

nu [n] z
(z−1)2

|z| > 1

n2u [n] z(z+1)

(z−1)3
|z| > 1

n3u [n]
z(z2+4z+1)

(z−1)4
|z| > 1

(− (αn))u [−n− 1] z
z−α |z| < |α|

αnu [n] z
z−α |z| > |α|

nαnu [n] αz
(z−α)2

|z| > |α|
n2αnu [n] αz(z+α)

(z−α)3
|z| > |α|Qm

k=1(n−k+1)

αmm! αnu [n] z
(z−α)m+1

γncos (αn) u [n] z(z−γcos(α))
z2−(2γcos(α))z+γ2 |z| > |γ|

γnsin (αn) u [n] zγsin(α)
z2−(2γcos(α))z+γ2 |z| > |γ|

108 CHAPTER 3. DIGITAL FILTERING

3.4 Understanding Pole/Zero Plots on the Z-Plane
3.4.1 Introduction to Poles and Zeros of the Z-Transform
Once the Z-transform of a system has been determined, one can use the information con-
tained in function's polynomials to graphically represent the function and easily observe
many de�ning characteristics. The Z-transform will have the below structure, based on
Rational Functions4:

X (z) =
P (z)
Q (z)

(3.32)

The two polynomials, P (z) and Q (z), allow us to �nd the poles and zeros5 of the
Z-Transform.

De�nition 3: zeros
1. The value(s) for z where P (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function
zero.

De�nition 4: poles
1. The value(s) for z where Q (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function
in�nite.

Example 3.4:
Below is a simple transfer function with the poles and zeros shown below it.

H (z) =
z + 1(

z − 1
2

) (
z + 3

4

)
The zeros are: {−1}

The poles are: { 1
2 ,−

(
3
4

)}

3.4.2 The Z-Plane
Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto
the Z-Plane. The Z-plane is a complex plane with an imaginary and real axis referring to
the complex-valued variable z. The position on the complex plane is given by rejθ and the
angle from the positive, real axis around the plane is denoted by θ. When mapping poles
and zeros onto the plane, poles are denoted by an "x" and zeros by an "o". The below �gure
shows the Z-Plane, and examples of plotting zeros and poles onto the plane can be found in
the following section.

4http://cnx.org/content/m10593/latest/
5http://cnx.org/content/m10112/latest/

109

Z-Plane

Figure 3.6

3.4.3 Examples of Pole/Zero Plots
This section lists several examples of �nding the poles and zeros of a transfer function and
then plotting them onto the Z-Plane.

Example 3.5: Simple Pole/Zero Plot
H (z) =

z(
z − 1

2

) (
z + 3

4

)
The zeros are: {0}
The poles are: { 1

2 ,−
(

3
4

)}
Example 3.6: Complex Pole/Zero Plot

H (z) =
(z − j) (z + j)(

z −
(

1
2 −

1
2j
)) (

z −
(

1
2 + 1

2j
))

The zeros are: {j,−j}
The poles are: {−1, 1

2 + 1
2j, 1

2 −
1
2j
}

MATLAB - If access to MATLAB is readily available, then you can use its functions to
easily create pole/zero plots. Below is a short program that plots the poles and zeros from
the above example onto the Z-Plane.

% Set up vector for zeros

110 CHAPTER 3. DIGITAL FILTERING

Pole/Zero Plot

Figure 3.7: Using the zeros and poles found from the transfer function, the one zero ismapped to zero and the two poles are placed at 1
2
and − `

3
4

´

Pole/Zero Plot

Figure 3.8: Using the zeros and poles found from the transfer function, the zeros aremapped to ±j, and the poles are placed at −1, 1
2

+ 1
2
j and 1

2
− 1

2
j

111

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);

zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

3.4.4 Pole/Zero Plot and Region of Convergence
The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from
the pole/zero plot. Although several regions of convergence may be possible, where each one
corresponds to a di�erent impulse response, there are some choices that are more practical.
A ROC can be chosen to make the transfer function causal and/or stable depending on the
pole/zero plot.
Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero
Plot (Example 3.5) discussed earlier. The shaded region indicates the ROC chosen for the
�lter. From this �gure, we can see that the �lter will be both causal and stable since the
above listed conditions are both met.

Example 3.7:
H (z) =

z(
z − 1

2

) (
z + 3

4

)

3.4.5 Frequency Response and the Z-Plane
The reason it is helpful to understand and create these pole/zero plots is due to their ability
to help us easily design a �lter. Based on the location of the poles and zeros, the magnitude
response of the �lter can be quickly understood. Also, by starting with the pole/zero plot,
one can design a �lter and obtain its transfer function very easily. Refer to this module6 for
information on the relationship between the pole/zero plot and the frequency response.

3.5 Filtering in the Frequency Domain
Because we are interested in actual computations rather than analytic calculations, we must
consider the details of the discrete Fourier transform. To compute the length-N DFT, we
assume that the signal has a duration less than or equal to N . Because frequency responses

6http://cnx.org/content/m10548/latest/

112 CHAPTER 3. DIGITAL FILTERING

Region of Convergence for the Pole/Zero Plot

Figure 3.9: The shaded area represents the chosen ROC for the transfer function.

have an explicit frequency-domain speci�cation7 in terms of �lter coe�cients, we don't have
a direct handle on which signal has a Fourier transform equaling a given frequency response.
Finding this signal is quite easy. First of all, note that the discrete-time Fourier transform
of a unit sample equals one for all frequencies. Because of the input and output of linear,
shift-invariant systems are related to each other by Y

(
ej2πf

)
= H

(
ej2πf

)
X
(
ej2πf

), a unit-
sample input, which has X

(
ej2πf

)
= 1, results in the output's Fourier transform equaling

the system's transfer function.
Exercise 3.1:
This statement is a very important result. Derive it yourself.
In the time-domain, the output for a unit-sample input is known as the system's unit-

sample response, and is denoted by h (n). Combining the frequency-domain and time-
domain interpretations of a linear, shift-invariant system's unit-sample response, we have
that h (n) and the transfer function are Fourier transform pairs in terms of the discrete-time
Fourier transform. (

h (n) ↔ H
(
ej2πf

)) (3.33)
Returning to the issue of how to use the DFT to perform �ltering, we can analytically

specify the frequency response, and derive the corresponding length-N DFT by sampling
the frequency response.

H (k) = H
(
e

j2πk
N

)
, k = {0, . . . , N − 1} (3.34)

Computing the inverse DFT yields a length-N signal no matter what the actual duration
of the unit-sample response might be. If the unit-sample response has a duration less
than or equal to N (it's a FIR �lter), computing the inverse DFT of the sampled frequency
response indeed yields the unit-sample response. If, however, the duration exceeds N , errors
are encountered. The nature of these errors is easily explained by appealing to the Sampling

7http://cnx.org/content/m0510/latest/#dtsinf

113

Theorem. By sampling in the frequency domain, we have the potential for aliasing in the
time domain (sampling in one domain, be it time or frequency, can result in aliasing in
the other) unless we sample fast enough. Here, the duration of the unit-sample response
determines the minimal sampling rate that prevents aliasing. For FIR systems � they
by de�nition have �nite-duration unit sample responses � the number of required DFT
samples equals the unit-sample response's duration: N ≥ q.

Exercise 3.2:
Derive the minimal DFT length for a length-q unit-sample response using the
Sampling Theorem. Because sampling in the frequency domain causes repetitions
of the unit-sample response in the time domain, sketch the time-domain result for
various choices of the DFT length N .

Exercise 3.3:
Express the unit-sample response of a FIR �lter in terms of di�erence equation
coe�cients. Note that the corresponding question for IIR �lters is far more di�cult
to answer: Consider the example8.
For IIR systems, we cannot use the DFT to �nd the system's unit-sample response:

aliasing of the unit-sample response will always occur. Consequently, we can only implement
an IIR �lter accurately in the time domain with the system's di�erence equation. Frequency-
domain implementations are restricted to FIR �lters.

Another issue arises in frequency-domain �ltering that is related to time-domain aliasing,
this time when we consider the output. Assume we have an input signal having duration
Nx that we pass through a FIR �lter having a length-q + 1 unit-sample response. What is
the duration of the output signal? The di�erence equation for this �lter is

y (n) = b0x (n) + · · ·+ bqx (n− q) (3.35)
This equation says that the output depends on current and past input values, with the input
value q samples previous de�ning the extent of the �lter's memory of past input values. For
example, the output at index Nx depends on x (Nx) (which equals zero), x (Nx − 1), through
x (Nx − q). Thus, the output returns to zero only after the last input value passes through
the �lter's memory. As the input signal's last value occurs at index Nx−1, the last nonzero
output value occurs when n − q = Nx − 1 or n = q + Nx − 1. Thus, the output signal's
duration equals q + Nx.

Exercise 3.4:
In words, we express this result as "The output's duration equals the input's du-
ration plus the �lter's duration minus one.". Demonstrate the accuracy of this
statement.
The main theme of this result is that a �lter's output extends longer than either its

input or its unit-sample response. Thus, to avoid aliasing when we use DFTs, the dominant
factor is not the duration of input or of the unit-sample response, but of the output. Thus,
the number of values at which we must evaluate the frequency response's DFT must be at
least q + Nx and we must compute the same length DFT of the input. To accommodate
a shorter signal than DFT length, we simply zero-pad the input: Ensure that for indices
extending beyond the signal's duration that the signal is zero. Frequency-domain �ltering,
diagrammed in Figure 3.10, is accomplished by storing the �lter's frequency response as

114 CHAPTER 3. DIGITAL FILTERING

DFT
x(n)

H(k)

IDFT
X(k) Y(k) y(n)

Figure 3.10: To �lter a signal in the frequency domain, �rst compute the DFT of theinput, multiply the result by the sampled frequency response, and �nally compute theinverse DFT of the product. The DFT's lengthmust be at least the sum of the input's andunit-sample response's duration minus one. We calculate these discrete Fourier transformsusing the fast Fourier transform algorithm, of course.

the DFT H (k), computing the input's DFT X (k), multiplying them to create the output's
DFT Y (k) = H (k) X (k), and computing the inverse DFT of the result to yield y (n).

Before detailing this procedure, let's clarify why so many new issues arose in trying to de-
velop a frequency-domain implementation of linear �ltering. The frequency-domain relation-
ship9 between a �lter's input and output is always true: Y

(
ej2πf

)
= H

(
ej2πf

)
X
(
ej2πf

).
This Fourier transforms in this result are discrete-time Fourier transforms; for example,
X
(
ej2πf

)
=
∑

n

(
x (n) e−(j2πfn)

). Unfortunately, using this relationship to perform �lter-
ing is restricted to the situation when we have analytic formulas for the frequency response
and the input signal. The reason why we had to "invent" the discrete Fourier transform
(DFT) has the same origin: The spectrum resulting from the discrete-time Fourier transform
depends on the continuous frequency variable f . That's �ne for analytic calculation, but
computationally we would have to make an uncountably in�nite number of computations.

note: Did you know that two kinds of in�nities can be meaningfully de�ned?
A countably in�nite quantity means that it can be associated with a limiting
process associated with integers. An uncountably in�nite quantity cannot be so
associated. The number of rational numbers is countably in�nite (the numerator
and denominator correspond to locating the rational by row and column; the total
number so-located can be counted, voila!); the number of irrational numbers is
uncountably in�nite. Guess which is "bigger?"

The DFT computes the Fourier transform at a �nite set of frequencies � samples the true
spectrum � which can lead to aliasing in the time-domain unless we sample su�ciently
fast. The sampling interval here is 1

K for a length-K DFT: faster sampling to avoid aliasing
thus requires a longer transform calculation. Since the longest signal among the input, unit-
sample response and output is the output, it is that signal's duration that determines the
transform length. We simply extend the other two signals with zeros (zero-pad) to compute
their DFTs.

Example 3.8:
Suppose we want to average daily stock prices taken over last year to yield a
running weekly average (average over �ve trading sessions). The �lter we want
is a length-5 averager (as shown in the unit-sample response10), and the input's
duration is 253 (365 calendar days minus weekend days and holidays). The output

8http://cnx.org/content/m10251/latest/#p0
9http://cnx.org/content/m0510/latest/#equation4
10http://cnx.org/content/m10251/latest/#�g1002

115

Trading Day (1997)

D
o

w
-J

o
n

e
s
 I

n
d

u
s
tr

ia
l
A

v
e

ra
g

e

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

8000

Daily Average
Weekly Average

Figure 3.11: The blue line shows the Dow Jones Industrial Average from 1997, and thered one the length-5 boxcar-�ltered result that provides a running weekly of this marketindex. Note the "edge" e�ects in the �ltered output.

duration will be 253 + 5 − 1 = 257, and this determines the transform length we
need to use. Because we want to use the FFT, we are restricted to power-of-two
transform lengths. We need to choose any FFT length that exceeds the required
DFT length. As it turns out, 256 is a power of two (28 = 256), and this length just
undershoots our required length. To use frequency domain techniques, we must
use length-512 fast Fourier transforms.
Figure 3.11 shows the input and the �ltered output. The MATLAB programs that
compute the �ltered output in the time and frequency domains are

Time Domain

h = [1 1 1 1 1]/5;

y = filter(h,1,[djia zeros(1,4)]);

Frequency Domain

h = [1 1 1 1 1]/5;

DJIA = fft(djia, 512);

H = fft(h, 512);

Y = H.*X;

y = ifft(Y);

note: The filter program has the feature that the length of its output
equals the length of its input. To force it to produce a signal having the
proper length, the program zero-pads the input appropriately.

MATLAB's fft function automatically zero-pads its input if the speci�ed trans-
form length (its second argument) exceeds the signal's length. The frequency do-
main result will have a small imaginary component � largest value is 2.2×10−11 �

116 CHAPTER 3. DIGITAL FILTERING

because of the inherent �nite precision nature of computer arithmetic. Because of
the unfortunate mis�t between signal lengths and favored FFT lengths, the number
of arithmetic operations in the time-domain implementation is far less than those
required by the frequency domain version: 514 versus 62,271. If the input sig-
nal had been one sample shorter, the frequency-domain computations would have
been more than a factor of two less (28,696), but far more than in the time-domain
implementation.
An interesting signal processing aspect of this example is demonstrated at the
beginning and end of the output. The ramping up and down that occurs can be
traced to assuming the input is zero before it begins and after it ends. The �lter
"sees" these initial and �nal values as the di�erence equation passes over the input.
These artifacts can be handled in two ways: we can just ignore the edge e�ects or
the data from previous and succeeding years' last and �rst week, respectively, can
be placed at the ends.

3.6 Linear-Phase FIR Filters
3.6.1 THE AMPLITUDE RESPONSE
If the real and imaginary parts of Hf (ω) are given by

Hf (ω) = Re (ω) + jIm (ω) (3.36)
the magnitude and phase are de�ned as

|Hf (ω) | =
√

(Re (ω))2 + (Im (ω))2

p (ω) = arctan
(

Im (ω)
Re (ω)

)
so that

Hf (ω) = |Hf (ω) |ejp(ω) (3.37)
With this de�nition, |Hf (ω) | is never negative and p (ω) is usually discontinuous, but it
can be very helpful to write Hf (ω) as

Hf (ω) = A (ω) ejθ(ω) (3.38)
where A (ω) can be positive and negative, and θ (ω) continuous. A (ω) is called the ampli-
tude response. Figure 3.12 illustrates the di�erence between |Hf (ω) | and A (ω).

A linear-phase phase �lter is one for which the continuous phase θ (ω) is linear.
Hf (ω) = A (ω) ejθ(ω)

with
θ (ω) = (−M) ω + B

We assume in the following that the impulse response h (n) is real-valued.

117

Figure 3.12

118 CHAPTER 3. DIGITAL FILTERING

3.6.2 WHY LINEAR-PHASE?
If a discrete-time cosine signal

x1 (n) = cos (ω1n + φ1)

is processed through a discrete-time �lter with frequency response
Hf (ω) = A (ω) ejθ(ω)

then the output signal is given by
y1 (n) = A (ω1) cos (ω1n + φ1 + θ (ω1))

or
y1 (n) = A (ω1) cos

(
ω1

(
n +

θ (ω1)
ω1

)
+ φ1

)
The LTI system has the e�ect of scaling the cosine signal and delaying it by θ(ω1)

ω1
.

Exercise 3.5:
When does the system delay cosine signals with di�erent frequencies by the same
amount?
The function θ(ω)

ω is called the phase delay. A linear phase �lter therefore has constant
phase delay.
3.6.3 WHY LINEAR-PHASE: EXAMPLE
Consider a discrete-time �lter described by the di�erence equation
y (n) = −0.1821x (n)+0.7865x (n− 1)−0.6804x (n− 2)+x (n− 3)+0.6804y (n− 1)−0.7865y (n− 2)+0.1821y (n− 3)

(3.39)
When ω1 = 0.31π, then the delay is −θ(ω1)

ω1
= 2.45. The delay is illustrated in Figure 3.13:

Notice that the delay is fractional � the discrete-time samples are not exactly reproduced
in the output. The fractional delay can be interpreted in this case as a delay of the underlying
continuous-time cosine signal.
3.6.4 WHY LINEAR-PHASE: EXAMPLE (2)
Consider the same system given on the previous slide, but let us change the frequency of
the cosine signal.

When ω2 = 0.47π, then the delay is −θ(ω2)
ω2

= 0.14.
note: For this example, the delay depends on the frequency, because this system
does not have linear phase.

3.6.5 WHY LINEAR-PHASE: MORE
From the previous slides, we see that a �lter will delay di�erent frequency components of a
signal by the same amount if the �lter has linear phase (constant phase delay).

In addition, when a narrow band signal (as in AM modulation) goes through a �lter, the
envelop will be delayed by the group delay or envelop delay of the �lter. The amount
by which the envelop is delayed is independent of the carrier frequency only if the �lter has
linear phase.

Also, in applications like image processing, �lters with non-linear phase can introduce
artifacts that are visually annoying.

119

Figure 3.13

3.7 Filter Structures
A realizable �lter must require only a �nite number of computations per output sample.
For linear, causal, time-Invariant �lters, this restricts one to rational transfer functions of
the form

H (z) =
b0 + b1z

−1 + · · ·+ bmz−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n

Assuming no pole-zero cancellations, H (z) is FIR if ai = 0 , i > 0 , and IIR otherwise.
Filter structures usually implement rational transfer functions as di�erence equations.

Whether FIR or IIR, a given transfer function can be implemented with many di�erent
�lter structures. With in�nite-precision data, coe�cients, and arithmetic, all �lter structures
implementing the same transfer function produce the same output. However, di�erent �lter
strucures may produce very di�erent errors with quantized data and �nite-precision or �xed-
point arithmetic. The computational expense and memory usage may also di�er greatly.
Knowledge of di�erent �lter structures allows DSP engineers to trade o� these factors to
create the best implementation.

3.8 Overview of Digital Filter Design
Advantages of FIR �lters

1. Straight forward conceptually and simple to implement

120 CHAPTER 3. DIGITAL FILTERING

Figure 3.14

2. Can be implemented with fast convolution
3. Always stable
4. Relatively insensitive to quantization
5. Can have linear phase (same time delay of all frequencies)

Advantages of IIR �lters

1. Better for approximating analog systems
2. For a given magnitude response speci�cation, IIR �lters often require much less com-

putation than an equivalent FIR, particularly for narrow transition bands
Both FIR and IIR �lters are very important in applications.
Generic Filter Design Procedure

1. Choose a desired response, based on application requirements
2. Choose a �lter class
3. Choose a quality measure
4. Solve for the �lter in class 2 optimizing criterion in 3

121

3.8.1 Perspective on FIR �ltering
Most of the time, people do L∞ optimal design, using the Parks-McClellan algorithm (Sec-
tion 4.11). This is probably the second most important technique in "classical" signal
processing (after the Cooley-Tukey (radix-211) FFT).

Most of the time, FIR �lters are designed to have linear phase. The most important
advantage of FIR �lters over IIR �lters is that they can have exactly linear phase. There
are advanced design techniques for minimum-phase �lters, constrained L2 optimal designs,
etc. (see chapter 8 of text). However, if only the magnitude of the response is important,
IIR �lers usually require much fewer operations and are typically used, so the bulk of FIR
�lter design work has concentrated on linear phase designs.

3.9 Window Design Method
The truncate-and-delay design procedure is the simplest and most obvious FIR design pro-
cedure.

Exercise 3.6:
Is it any Good?

3.9.1 L2 optimization criterion
�nd h [n] , 0 ≤ n ≤ M−1 , maximizing the energy di�erence between the desired response
and the actual response: i.e., �nd

minh[n]

{∫ π

−π

(|Hd (ω)−H (ω) |)2dω

}
by Parseval's relationship12
minh[n]

{∫ π

−π
(|Hd (ω)−H (ω) |)2dω

}
= 2π

∑∞
n=−∞

(
(|hd [n]− h [n] |)2

)
= 2π

(∑−1
n=−∞

(
(|hd [n]− h [n] |)2

)
+
∑M−1

n=0

(
(|hd [n]− h [n] |)2

)
+
∑∞

n=M

(
(|hd [n]− h [n] |)2

))
(3.40)

Since = h [n] , n < 0n ≥ M this becomes

minh[n]

{∫ π

−π

(|Hd (ω)−H (ω) |)2dω

}
=

−1∑
h=−∞

(
(|hd [n] |)2

)
+

M−1∑
n=0

(
(|h [n]− hd [n] |)2

)
+

∞∑
n=M

(
(|hd [n] |)2

)
Note: h [n] has no in�uence on the �rst and last sums.
The best we can do is let

h [n] =
{

hd [n] if 0 ≤ n ≤ M − 1
0 if else

Thus h [n] = hd [n]w [n],
w [n] =

{
1 if 0 ≤ n (M − 1)

0 if else
is optimal in a least-total-sqaured-error (L2, or energy) sense!

11http://cnx.org/content/m12016/latest/
12http://cnx.org/content/m0047/latest/

122 CHAPTER 3. DIGITAL FILTERING

Exercise 3.7:
Why, then, is this design often considered undersirable?
For desired spectra with discontinuities, the least-square designs are poor in a minimax

(worst-case, or L∞) error sense.
3.9.2 Window Design Method
Apply a more gradual truncation to reduce "ringing" (Gibb's Phenomenon13)

,

Note: H (ω) = Hd (ω) ∗W (ω)

The window design procedure (except for the boxcar window) is ad-hoc and not optimal
in any usual sense. However, it is very simple, so it is sometimes used for "quick-and-dirty"
designs of if the error criterion is itself heurisitic.

3.10 Frequency Sampling Design Method for FIR �lters
Given a desired frequency response, the frequency sampling design method designs a �l-
ter with a frequency response exactly equal to the desired response at a particular set of
frequencies ωk.
Procedure

Hd (ωk) =
M−1∑
n=0

(
h (n) e−(jωkn)

)
, k = [o, 1, . . . , N − 1] (3.41)

Note: Desired Response must incluce linear phase shift (if linear phase is desired)
Exercise 3.8:
What is Hd (ω) for an ideal lowpass �lter, coto� at ωc?
Note: This set of linear equations can be written in matrix form

Hd (ωk) =
M−1∑
n=0

(
h (n) e−(jωkn)

) (3.42)

Hd (ω0)
Hd (ω1)...

Hd (ωN−1)

 =

e−(jω00) e−(jω01) . . . e−(jω0(M−1))

e−(jω10) e−(jω11) . . . e−(jω1(M−1))

...
e−(jωM−10) e−(jωM−11) . . . e−(jωM−1(M−1))

h (0)
h (1)...

h (M − 1)

(3.43)

or
Hd = Wh

So
h = W−1Hd (3.44)

Note: W is a square matrix for N = M , and invertible as long as ωi 6= ωj +2πl,
i 6= j

13http://cnx.org/content/m10092/latest/

123

3.10.1 Important Special Case
What if the frequencies are equally spaced between 0 and 2π, i.e. ωk = 2πk

M + α
Then

Hd (ωk) =
M−1∑
n=0

(
h (n) e−(j 2πkn

M)e−(jαn)
)

=
M−1∑
n=0

((
h (n) e−(jαn)

)
e−(j 2πkn

M)
)

= DFT!

so
h (n) e−(jαn) =

1
M

M−1∑
k=0

(
Hd (ωk) e+j 2πnk

M

)
or

h [n] =
ejαn

M

M−1∑
k=0

(
Hd [ωk] ej 2πnk

M

)
= ejαnIDFT [Hd [ωk]]

3.10.2 Important Special Case 2
h [n] symmetric, linear phase, and has real coe�cients. Since h [n] = h [−1], there are only
M
2 degrees of freedom, and only M

2 linear equations are required.
H [ωk] =

∑M−1
n=0

(
h [n] e−(jωkn)

)
=

∑M

2 −1
n=0

(
h [n]

(
e−(jωkn) + e−(jωk(M−n−1))

)) if M even∑M− 3
2

n=0

(
+h [n]

(
e−(jωkn) + e−(jωk(M−n−1))

) (
h
[

M−1
2

]
e−(jωk

M−1
2)
)) if M odd

=

{
e−(jωk

M−1
2)2

∑M
2 −1

n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
))) if M even

e−(jωk
M−1

2)2
∑M− 3

2
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
))

+ h
[

M−1
2

]) if M odd
(3.45)

Removing linear phase from both sides yields

A (ωk) =

{
2
∑M

2 −1
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
))) if M even

2
∑M− 3

2
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
))

+ h
[

M−1
2

]) if M odd
Due to symmetry of response for real coe�cients, only M

2 ωk on ω ∈ [0, π) need be speci�ed,
with the frequencies −ωk thereby being implicitly de�ned also. Thus we have M

2 real-valued
simultaneous linear equations to solve for h [n].
3.10.2.1 Special Case 2a
h [n] symmetric, odd length, linear phase, real coe�cients, and ωk equally spaced: ωk =
nπk
M , 0 ≤ k ≤ M − 1

h [n] = IDFT [Hd (ωk)]
= 1

M

∑M−1
k=0

(
A (ωk) e−(j 2πk

M) M−1
2 ej 2πnk

M

)
= 1

M

∑M−1
k=0

(
A (k) ej(2πk

M (n−M−1
2))

) (3.46)

To yield real coe�cients, A (ω) mus be symmetric
A (ω) = A (−ω) ⇒ A [k] = A [M − k]

124 CHAPTER 3. DIGITAL FILTERING

h [n] = 1
M

(
A (0) +

∑M−1
2

k=1

(
A [k]

(
ej 2πk

M (n−M−1
2) + e−(j2πk(n−M−1

2))
)))

= 1
M

(
A (0) + 2

∑M−1
2

k=1

(
A [k] cos

(
2πk
M

(
n− M−1

2

))))
= 1

M

(
A (0) + 2

∑M−1
2

k=1

(
A [k] (−1)kcos

(
2πk
M

(
n + 1

2

)))) (3.47)

Simlar equations exist for even lengths, anti-symmetric, and α = 1
2 �lter forms.

3.10.3 Comments on frequency-sampled design
This method is simple conceptually and very e�cient for equally spaced samples, since h [n]
can be computed using the IDFT.

H (ω) for a frequency sampled design goes exactly through the sample points, but it
may be very far o� from the desired response for ω 6= ωk. This is the main problem with
frequency sampled design.

Possible solution to this problem: specify more frequency samples than degrees of free-
dom, and minimize the total error in the frequency response at all of these samples.
3.10.4 Extended frequency sample design
For the samples H (ωk) where 0 ≤ k ≤ M − 1 and N > M , �nd h [n], where 0 ≤ n ≤ M − 1
minimizing ‖ Hd (ωk)−H (ωk) ‖

For ‖ l ‖∞ norm, this becomes a linear programming problem (standard packages avail-
ble!)

Here we will consider the ‖ l ‖2 norm.
To minimize the ‖ l ‖2 norm; that is,∑N−1

n=0 (|Hd (ωk)−H (ωk) |), we have an overdeter-
mined set of linear equations:

 e−(jω00) . . . e−(jω0(M−1))

...
e−(jωN−10) . . . e−(jωN−1(M−1))

h =

Hd (ω0)
Hd (ω1)...

Hd (ωN−1)

or

Wh = Hd

The minimum error norm solution is well known to be h = (W ∗W)−1
W ∗Hd; (W ∗W)−1

W ∗

is well known as the pseudo-inverse matrix.
Note: Extended frequency sampled design discourages radical behavior of the
frequency response between samples for su�ciently closely spaced samples. How-
ever, the actual frequency response may no longer pass exactly through any of the
Hd (ωk).

3.11 Parks-McClellan FIR Filter Design
Very often, the approximation tolerances for a �lter are given in terms of the maximum
deviation within bands. For example, we might wish a lowpass �lter in a (16-bit) CD player
to have no more than 1

2 -bit deviation in the pass and stop bands.
H (ω) =

{
1− 1

217 ≤ |H (ω) | ≤ 1 + 1
217 if |ω| ≤ ωp

1
217 ≥ |H (ω) | if ωp ≤ |ω| ≤ π

125

Figure 3.15: The black boxes on the left and right are the passbands, the black boxesin the middle represent the stop band, and the space between the boxes are the transitionbands. Note that overshoots may be allowed in the transition bands.

Typically, we would like to have the shortest-length �lter achieving these speci�cations.
See Figure 3.15.

Exercise 3.9:
Must there be a transition band?

3.11.1 Formal Statement of the L-∞ (Minimax) Design Problem
For a given �lter length (M) and type (odd length, symmetric, linear phase, for example),
and a relative error weighting function W (ω), �nd the �lter coe�cients minimizing the
maximum error

argmin
h

argmax
ω∈F

|E (ω) | = argmin
h
‖ E (ω) ‖∞

where
E (ω) = W (ω) (Hd (ω)−H (ω))

and F is a compact subset of ω ∈ [0, π] (i.e., all ω in the passbands and stop bands).

126 CHAPTER 3. DIGITAL FILTERING

Note: Typically, we would often rather specify ‖ E (ω) ‖∞ ≤ δ and minimize
over M and h; however, the design techniques minimize δ for a given M . One then
repeats the design procedure for di�erent M until the minimum M satisfying the
requirements is found.

We will discuss in detail the design only of odd-length symmetric linear-phase FIR �lters.
Even-length and anti-symmetric linear phase FIR �lters are essentially the same except for
a slightly di�erent implicit weighting function. For arbitrary phase, exactly optimal design
procedures have only recently been developed (1990).

3.11.2 Outline of L-∞ Filter Design
1. Using results from Approximation Theory, simple conditions for determining whether

a given �lter is L∞ optimal are found.
2. Some ad-hoc iterative methods for �nding a �lter which satis�es these condition (and

which is thus optimal) are developed.
That is, the L∞ �lter design problem is actually solved indirectly.

3.11.3 Conditions for L-∞ Optimality of a Linear-phase FIR Filter
All conditions are based on Chebyshev's "Alternation Theorem," a mathematical fact from
polynomial approximation theory.

3.11.3.1 Alternation Theorem
Let F be a compact subset on the real axis x, and let P (x) be and Lth-order polynomial

P (x) =
L∑

k=0

(
akxk

)
Also, let D (x) be a desired function of x that is continuous on F , and W (x) a positive,
continuous weighting function on F . De�ne the error E (x) on F as

E (x) = W (x) (D (x)− P (x))

and
‖ E (x) ‖∞ = argmax

x∈F
|E (x) |

A necessary and su�cient condition that P (x) is the unique Lth-order polynomial minimiz-
ing ‖ E (x) ‖∞ is that E (x) exhibits at least L + 2 "alternations;" that is, there must exist
at least L+2 values of x, xk ∈ F , k = [0, 1, . . . , L + 1], such that x0 < x1 < · · · < xL+2 andsuch that E (xk) = − (E (xk+1)) = ± (‖ E ‖∞)

Exercise 3.10:
What does this have to do with linear-phase �lter design?

127

3.11.4 Optimality Conditions for Even-length Symmetric Linear-
phase Filters
For M even,

A (ω) =
L∑

n=0

(
h (L− n) cos

(
ω

(
n +

1
2

)))
where L = M

2 −1 Using the trigonometric identity cos (α + β) = cos (α− β)+2cos (α) cos (β)
to pull out the ω

2 term and then using the other trig identities (pg 134), it can be shown
that A (ω) can be written as

A (ω) = cos
(ω

2

) L∑
k=0

(
αkcosk (ω)

)
Again, this is a polynomial in x = cos (ω), except for a weighting function out in front.

E (ω) = W (ω) (Ad (ω)−A (ω))
= W (ω)

(
Ad (ω)− cos

(
ω
2

)
P (ω)

)
= W (ω) cos

(
ω
2

)(Ad(ω)

cos(ω
2) − P (ω)

) (3.48)

which implies
E (x) = W ' (x)

(
A'

d (x)− P (x)
) (3.49)

where
W ' (x) = W

(
(cos (x))−1

)
cos
(

1
2
(cos (x))−1

)
and

A'
d (x) =

Ad

(
(cos (x))−1

)
cos
(

1
2 (cos (x))−1

)
Again, this is a polynomial approximation problem, so the alternation theorem holds. If
E (ω) has at least L + 2 = M

2 + 1 alternations, the even-length symmetric �lter is optimal
in an L∞ sense.

The prototypical �lter design problem:
W =

{
1 if |ω| ≤ ωp

δs

δp
if |ωs| ≤ |ω|

See Figure 3.16.
3.11.5 L-∞ Optimal Lowpass Filter Design Lemma

1. The maximum possible number of alternations for a lowpass �lter is L + 3: The
proof is that the extrema of a polynomial occur only where the derivative is zero:
∂
∂xP (x) = 0. Since P ′ (x) is an (L− 1)th-order polynomial, it can have at most L− 1
zeros. However, the mapping x = cos (ω) implies that ∂

∂ω A (ω) = 0 at ω = 0 and
ω = π, for two more possible alternation points. Finally, the band edges can also be
alternations, for a total of L− 1 + 2 + 2 = L + 3 possible alternations.

2. There must be an alternation at either ω = 0 or ω = π.
3. Alternations must occur at ωp and ωs. See Figure 3.16.

128 CHAPTER 3. DIGITAL FILTERING

Figure 3.16

129

4. The �lter must be equiripple except at possibly ω = 0 or ω = π. Again see Figure 3.16.
Note: The alternation theorem doesn't directly suggest a method for computing
the optimal �lter. It simply tells us how to recognize that a �lter is optimal, or
isn't optimal. What we need is an intelligent way of guessing the optimal �lter
coe�cients.

In matrix form, these L + 2 simultaneous equations become

1 cos (ω0) cos (2ω0) ... cos (Lω0) 1
W (ω0)

1 cos (ω1) cos (2ω1) ... cos (Lω1) −1
W (ω1)...

...
.

1 cos (ωL+1) cos (2ωL+1) ... cos (LωL+1) ±1
W (ωL+1)

h (L)
h (L− 1)...

h (1)
h (0)

δ

=

Ad (ω0)
Ad (ω1).........

Ad (ωL+1)

or

W

(
h
δ

)
= Ad

So, for the given set of L + 2 extremal frequencies, we can solve for h and δ via (h, δ)T =
W−1Ad. Using the FFT, we can compute A (ω) of h (n), on a dense set of frequencies. If the
old ωk are, in fact the extremal locations of A (ω), then the alternation theorem is satis�ed
and h (n) is optimal. If not, repeat the process with the new extremal locations.

3.11.6 Computational Cost
O
(
L3
) for the matrix inverse and N log2N for the FFT (N ≥ 32L, typically), per iteration!

This method is expensive computationally due to the matrix inverse.
A more e�cient variation of this method was developed by Parks and McClellan (1972),

and is based on the Remez exchange algorithm. To understand the Remez exchange algo-
rithm, we �rst need to understand Lagrange Interpoloation14.

Now A (ω) is an Lth-order polynomial in x = cos (ω), so Lagrange interpolation can be
used to exactly compute A (ω) from L + 1 samples of A (ωk), k = [0, 1, 2, ..., L].

Thus, given a set of extremal frequencies and knowing δ, samples of the amplitude
response A (ω) can be computed directly from the

A (ωk) =
(−1)k(+1)

W (ωk)
δ + Ad (ωk) (3.50)

without solving for the �lter coe�cients!
This leads to computational savings!
Note that Equation 3.50 is a set of L + 2 simultaneous equations, which can be solved

for δ to obtain (Rabiner, 1975)

δ =
∑L+1

k=0 (γkAd (ωk))∑L+1
k=0

(
(−1)k(+1)γk

W (ωk)

) (3.51)

14http://cnx.org/content/m1/latest/

130 CHAPTER 3. DIGITAL FILTERING

where
γk =

L+1∏
i=0
i6=k

(
1

cos (ωk)− cos (ωi)

)

The result is the Parks-McClellan FIR �lter design method, which is simply an application
of the Remez exchange algorithm to the �lter design problem. See Figure 3.17.

The cost per iteration is O
(
16L2

), as opposed to O
(
L3
); much more e�cient for large

L. Can also interpolate to DFT sample frequencies, take inverse FFT to get corresponding
�lter coe�cients, and zeropad and take longer FFT to e�ciently interpolate.

3.12 FIR Filter Design using MATLAB
3.12.1 FIR Filter Design Using MATLAB
3.12.1.1 Design by windowing
The MATLAB function fir1() designs conventional lowpass, highpass, bandpass, and band-
stop linear-phase FIR �lters based on the windowing method. The command

b = fir1(N,Wn)

returns in vector b the impulse response of a lowpass �lter of order N. The cut-o� fre-
quency Wn must be between 0 and 1 with 1 corresponding to the half sampling rate.

The command

b = fir1(N,Wn,'high')

returns the impulse response of a highpass �lter of order N with normalized cuto� fre-
quency Wn.

Similarly, b = fir1(N,Wn,'stop') with Wn a two-element vector designating the stop-
band designs a bandstop �lter.

Without explicit speci�cation, the Hamming window is employed in the design. Other
windowing functions can be used by specifying the windowing function as an extra argument
of the function. For example, Blackman window can be used instead by the command b =

fir1(N, Wn, blackman(N)).
3.12.1.2 Parks-McClellan FIR �lter design
The MATLAB command

b = remez(N,F,A)

131

Figure 3.17: The initial guess of extremal frequencies is usually equally spaced inthe band. Computing δ costs O
`
L2

´. Using Lagrange interpolation costs O (16LL) ≈
O

`
16L2

´. Computing h (n) costs O
`
L3

´, but it is only done once!

132 CHAPTER 3. DIGITAL FILTERING

returns the impulse response of the length N+1 linear phase FIR �lter of order N designed
by Parks-McClellan algorithm. F is a vector of frequency band edges in ascending order
between 0 and 1 with 1 corresponding to the half sampling rate. A is a real vector of the
same size as F which speci�es the desired amplitude of the frequency response of the points
(F(k),A(k)) and (F(k+1),A(k+1)) for odd k. For odd k, the bands between F(k+1) and
F(k+2) is considered as transition bands.

3.13 MATLAB FIR Filter Design Exercise
3.13.1 FIR Filter Design MATLAB Exercise
3.13.1.1 Design by windowing

Exercise 3.11:
Assuming sampling rate at 48kHz, design an order-40 low-pass �lter having cut-o�
frequency 10kHz by windowing method. In your design, use Hamming window as
the windowing function.

3.13.1.2 Parks-McClellan Optimal Design
Exercise 3.12:
Assuming sampling rate at 48kHz, design an order-40 lowpass �lter having transi-
tion band 10kHz-11kHz using the Parks-McClellan optimal FIR �lter design algo-
rithm.

133

Solutions to Exercises in Chapter 3
Solution to Exercise 3.1:
The DTFT of the unit sample equals a constant (equaling 1). Thus, the Fourier transform
of the output equals the transfer function.
Solution to Exercise 3.2:
In sampling a discrete-time signal's Fourier transform L times equally over [0, 2π) to form
the DFT, the corresponding signal equals the periodic repetition of the original signal.(

S (k) ↔
∞∑

i=−∞
(s (n− iL))

)
(3.52)

To avoid aliasing (in the time domain), the transform length must equal or exceed the
signal's duration.
Solution to Exercise 3.3:
The di�erence equation for an FIR �lter has the form

y (n) =
q∑

m=0

(bmx (n−m)) (3.53)

The unit-sample response equals

h (n) =
q∑

m=0

(bmδ (n−m)) (3.54)

which corresponds to the representation described in a problem15 of a length-q boxcar �lter.
Solution to Exercise 3.4:
The unit-sample response's duration is q + 1 and the signal's Nx. Thus the statement is
correct.
Solution to Exercise 3.5:
• θ(ω)

ω = constant

• θ (ω) = Kω

• The phase is linear.
Solution to Exercise 3.6:
Yes; in fact it's optimal! (in a certain sense)
Solution to Exercise 3.7: Gibbs Phenomenon
Solution to Exercise 3.8:{

e−(jω M−1
2) if − ωc ≤ ω ≤ ωc

0 if − π ≤ ω < −ωc|ωc < ω ≤ π

15http://cnx.org/content/m10251/latest/#ex2001

134 CHAPTER 3. DIGITAL FILTERING

Solution to Exercise 3.10:
It's the same problem! To show that, consider an odd-length, symmetric linear phase �lter.

H (ω) =
∑M−1

n=0

(
h (n) e−(jωn)

)
= e−(jω M−1

2)
(
h
(

M−1
2

)
+ 2

∑L
n=1

(
h
(

M−1
2 − n

)
cos (ωn)

)) (3.55)

A (ω) = h (L) + 2
L∑

n=1

(h (L− n) cos (ωn)) (3.56)

Where (L .= M−1
2

).
Using trigonometric identities (such as cos (nα) = 2cos ((n− 1) α) cos (α)− cos ((n− 2) α)),
we can rewrite A (ω) as

A (ω) = h (L) + 2
L∑

n=1

(h (L− n) cos (ωn)) =
L∑

k=0

(
αkcosk (ω)

)
where the αk are related to the h (n) by a linear transformation. Now, let x = cos (ω).
This is a one-to-one mapping from x ∈ [−1, 1] onto ω ∈ [0, π]. Thus A (ω) is an Lth-order
polynomial in x = cos (ω)!

implication: The alternation theorem holds for the L∞ �lter design problem,
too!

Therefore, to determine whether or not a length-M , odd-length, symmetric linear-phase �l-
ter is optimal in an L∞ sense, simply count the alternations in E (ω) = W (ω) (Ad (ω)−A (ω))
in the pass and stop bands. If there are L + 2 = M+3

2 or more alternations, h (n),
0 ≤ n ≤ M − 1 is the optimal �lter!
Solution to Exercise 3.11:

b = fir1(40,10.0/48.0)

Solution to Exercise 3.12:

b = remez(40,[1 1 0 0],[0 10/48 11/48 1])

135

(a)

(b)

Figure 3.18: (a) A (ω), small M (b) A (ω), large M

136 CHAPTER 3. DIGITAL FILTERING

Chapter 4

Statistical and Adaptive Signal

Processing

4.1 Introduction to Random Signals and Processes
Before now, you have probably dealt strictly with the theory behind signals and systems, as
well as look at some the basic characteristics of signals1 and systems2. In doing so you have
developed an important foundation; however, most electrical engineers do not get to work in
this type of fantasy world. In many cases the signals of interest are very complex due to the
randomness of the world around them, which leaves them noisy and often corrupted. This
often causes the information contained in the signal to be hidden and distorted. For this
reason, it is important to understand these random signals and how to recover the necessary
information.

4.1.1 Signals: Deterministic vs. Stochastic
For this study of signals and systems, we will divide signals into two groups: those that have
a �xed behavior and those that change randomly. As most of you have probably already
dealt with the �rst type, we will focus on introducing you to random signals. Also, note that
we will be dealing strictly with discrete-time signals since they are the signals we deal with
in DSP and most real-world computations, but these same ideas apply to continuous-time
signals.
4.1.1.1 Deterministic Signals
Most introductions to signals and systems deal strictly with deterministic signals. Each
value of these signals are �xed and can be determined by a mathematical expression, rule, or
table. Because of this, future values of any deterministic signal can be calculated from past
values. For this reason, these signals are relatively easy to analyze as they do not change,
and we can make accurate assumptions about their past and future behavior.
4.1.1.2 Stochastic Signals
Unlike deterministic signals, stochastic signals, or random signals, are not so nice.
Random signals cannot be characterized by a simple, well-de�ned mathematical equation

1http://cnx.org/content/m10057/latest/
2http://cnx.org/content/m10084/latest/

137

138 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Deterministic Signal

Figure 4.1: An example of a deterministic signal, the sine wave.

Random Signal

Figure 4.2: We have taken the above sine wave and added random noise to it to comeup with a noisy, or random, signal. These are the types of signals that we wish to learnhow to deal with so that we can recover the original sine wave.

and their future values cannot be predicted. Rather, we must use probability and statistics
to analyze their behavior. Also, because of their randomness, average values (Section 5.3)
from a collection of signals are usually studied rather than analyzing one individual signal.

4.1.2 Random Process
As mentioned above, in order to study random signals, we want to look at a collection of
these signals rather than just one instance of that signal. This collection of signals is called
a random process.

De�nition 5: random process
A family or ensemble of signals that correspond to every possible outcome of a
certain signal measurement. Each signal in this collection is referred to as a real-
ization or sample function of the process.

Example:
As an example of a random process, let us look at the Random Sinusoidal
Process below. We use f [n] = Asin (ωn + φ) to represent the sinusoid
with a given amplitude and phase. Note that the phase and amplitude of
each sinusoid is based on a random number, thus making this a random
process.

139

Random Sinusoidal Process

Figure 4.3: A random sinusoidal process, with the amplitude and phase being randomnumbers.

140 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

A random process is usually denoted by X (t) or X [n], with x (t) or x [n] used to represent
an individual signal or waveform from this process.

In many notes and books, you might see the following notation and terms used to
describe di�erent types of random processes. For a discrete random process, sometimes
just called a random sequence, t represents time that has a �nite number of values. If
t can take on any value of time, we have a continuous random process. Often times
discrete and continuous refer to the amplitude of the process, and process or sequence refer
to the nature of the time variable. For this study, we often just use random process to
refer to a general collection of discrete-time signals, as seen above in Figure 4.3.

4.2 Stationary and Nonstationary Random Processes
4.2.1 Introduction
From the de�nition of a random process (Section 5.1), we know that all random processes
are composed of random variables, each at its own unique point in time. Because of this,
random processes have all the properties of random variables, such as mean, correlation,
variances, etc.. When dealing with groups of signals or sequences it will be important for us
to be able to show whether of not these statistical properties hold true for the entire random
process. To do this, the concept of stationary processes has been developed. The general
de�nition of a stationary process is:

De�nition 6: stationary process
a random process where all of its statistical properties do not vary with time

Processes whose statistical properties do change are referred to as nonstationary.
Understanding the basic idea of stationarity will help you to be able to follow the more

concrete and mathematical de�nition to follow. Also, we will look at various levels of sta-
tionarity used to describe the various types of stationarity characteristics a random process
can have.
4.2.2 Distribution and Density Functions
In order to properly de�ne what it means to be stationary from a mathematical standpoint,
one needs to be somewhat familiar with the concepts of distribution and density functions.
If you can remember your statistics then feel free to skip this section!

Recall that when dealing with a single random variable, the probability distribution
function is a simply tool used to identify the probability that our observed random variable
will be less than or equal to a given number. More precisely, let X be our random variable,
and let x be our given value; from this we can de�ne the distribution function as

Fx (x) = Pr [X ≤ x] (4.1)
This same idea can be applied to instances where we have multiple random variables as
well. There may be situations where we want to look at the probability of event X and Y
both occurring. For example, below is an example of a second-order joint distribution
function.

Fx (x, y) = Pr [X ≤ x, Y ≤ y] (4.2)
While the distribution function provides us with a full view of our variable or processes

probability, it is not always the most useful for calculations. Often times we will want to
look at its derivative, the probability density function (pdf). We de�ne the the pdf as

fx (x) =
d

dx
Fx (x) (4.3)

141

fx (x) dx = Pr [x < X ≤ x + dx] (4.4)
Equation 4.4 reveals some of the physical signi�cance of the density function. This equa-
tions tells us the probability that our random variable falls within a given interval can be
approximated by fx (x) dx. From the pdf, we can now use our knowledge of integrals to
evaluate probabilities from the above approximation. Again we can also de�ne a joint
density function which will include multiple random variables just as was done for the
distribution function. The density function is used for a variety of calculations, such as
�nding the expected value or proving a random variable is stationary, to name a few.

note: The above examples explain the distribution and density functions in
terms of a single random variable, X. When we are dealing with signals and
random processes, remember that we will have a set of random variables where a
di�erent random variable will occur at each time instance of the random process,
X (tk). In other words, the distribution and density function will also need to take
into account the choice of time.

4.2.3 Stationarity
Below we will now look at a more in depth and mathematical de�nition of a stationary
process. As was mentioned previously, various levels of stationarity exist and we will look
at the most common types.

4.2.3.1 First-Order Stationary Process
A random process is classi�ed as �rst-order stationary if its �rst-order probability density
function remains equal regardless of any shift in time to its time origin. If we let xt1 representa given value at time t1, then we de�ne a �rst-order stationary as one that satis�es the
following equation:

fx (xt1) = fx (xt1+τ) (4.5)
The physical signi�cance of this equation is that our density function, fx (xt1), is completely
independent of t1 and thus any time shift, τ .

The most important result of this statement, and the identifying characteristic of any
�rst-order stationary process, is the fact that the mean is a constant, independent of any
time shift. Below we show the results for a random process, X, that is a discrete-time signal,
x [n].

X = mx [n]
= E [x [n]]
= constant (independentofn)

(4.6)

4.2.3.2 Second-Order and Strict-Sense Stationary Process
A random process is classi�ed as second-order stationary if its second-order probability
density function does not vary over any time shift applied to both values. In other words,
for values xt1 and xt2 then we will have the following be equal for an arbitrary time shift τ .

fx (xt1 , xt2) = fx (xt1+τ , xt2+τ) (4.7)

142 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

From this equation we see that the absolute time does not a�ect our functions, rather it
only really depends on the time di�erence between the two variables. Looked at another
way, this equation can be described as

Pr [X (t1) ≤ x1, X (t2) ≤ x2] = Pr [X (t1 + τ) ≤ x1, X (t2 + τ) ≤ x2] (4.8)
These random processes are often referred to as strict sense stationary (SSS) when

all of the distribution functions of the process are unchanged regardless of the time shift
applied to them.

For a second-order stationary process, we need to look at the autocorrelation function
(Section 5.5) to see its most important property. Since we have already stated that a
second-order stationary process depends only on the time di�erence, then all of these types
of processes have the following property:

Rxx (t, t + τ) = E [X (t + τ)]
= Rxx (τ) (4.9)

4.2.3.3 Wide-Sense Stationary Process
As you begin to work with random processes, it will become evident that the strict require-
ments of a SSS process is more than is often necessary in order to adequately approximate
our calculations on random processes. We de�ne a �nal type of stationarity, referred to as
wide-sense stationary (WSS), to have slightly more relaxed requirements but ones that
are still enough to provide us with adequate results. In order to be WSS a random process
only needs to meet the following two requirements.

1. X = E [x [n]] = constant

2. E [X (t + τ)] = Rxx (τ)

Note that a second-order (or SSS) stationary process will always be WSS; however, the
reverse will not always hold true.

4.3 Random Processes: Mean and Variance
In order to study the characteristics of a random process (Section 5.1), let us look at some
of the basic properties and operations of a random process. Below we will focus on the
operations of the random signals that compose our random processes. We will denote our
random process with X and a random variable from a random process or signal by x.
4.3.1 Mean Value
Finding the average value of a set of random signals or random variables is probably the most
fundamental concepts we use in evaluating random processes through any sort of statistical
method. The mean of a random process is the average of all realizations of that process. In
order to �nd this average, we must look at a random signal over a range of time (possible
values) and determine our average from this set of values. The mean, or average, of a
random process, x (t), is given by the following equation:

mx (t) = µx (t)
= X
= E [X]
=

∫∞
−∞ xf (x) dx

(4.10)

143

This equation may seem quite cluttered at �rst glance, but we want to introduce you to the
various notations used to represent the mean of a random signal or process. Throughout
texts and other readings, remember that these will all equal the same thing. The symbol,
µx (t), and the X with a bar over it are often used as a short-hand to represent an average,
so you might see it in certain textbooks. The other important notation used is, E [X], which
represents the "expected value of X" or the mathematical expectation. This notation is very
common and will appear again.

If the random variables, which make up our random process, are discrete or quantized
values, such as in a binary process, then the integrals become summations over all the
possible values of the random variable. In this case, our expected value becomes

E [x [n]] =
∑

x

(αPr [x [n] = α]) (4.11)

If we have two random signals or variables, their averages can reveal how the two signals
interact. If the product of the two individual averages of both signals do not equal the
average of the product of the two signals, then the two signals are said to be linearly
independent, also referred to as uncorrelated.

In the case where we have a random process in which only one sample can be viewed at
a time, then we will often not have all the information available to calculate the mean using
the density function as shown above. In this case we must estimate the mean through the
time-average mean (Section 4.3.4), discussed later. For �elds such as signal processing that
deal mainly with discrete signals and values, then these are the averages most commonly
used.
4.3.1.1 Properties of the Mean
• The expected value of a constant, α, is the constant:

E [α] = α (4.12)
• Adding a constant, α, to each term increases the expected value by that constant:

E [X + α] = E [X] + α (4.13)
• Multiplying the random variable by a constant, α, multiplies the expected value by

that constant.
E [αX] = αE [X] (4.14)

• The expected value of the sum of two or more random variables, is the sum of each
individual expected value.

E [X + Y] = E [X] + E [Y] (4.15)

4.3.2 Mean-Square Value
If we look at the second moment of the term (we now look at x2 in the integral), then
we will have the mean-square value of our random process. As you would expect, this is
written as

X2 = E
[
X2
]

=
∫∞
−∞ x2f (x) dx

(4.16)
This equation is also often referred to as the average power of a process or signal.

144 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.3.3 Variance
Now that we have an idea about the average value or values that a random process takes,
we are often interested in seeing just how spread out the di�erent random values might be.
To do this, we look at the variance which is a measure of this spread. The variance, often
denoted by σ2, is written as follows:

σ2 = Var (X)
= E

[
(X − E [X])2

]
=

∫∞
−∞

(
x−X

)2
f (x) dx

(4.17)

Using the rules for the expected value, we can rewrite this formula as the following form,
which is commonly seen:

σ2 = X2 −
(
X
)2

= E
[
X2
]
− (E [X])2

(4.18)

4.3.3.1 Standard Deviation
Another common statistical tool is the standard deviation. Once you know how to calculate
the variance, the standard deviation is simply the square root of the variance, or σ.
4.3.3.2 Properties of Variance
• The variance of a constant, α, equals zero:

Var (α) = σ(α)2

= 0
(4.19)

• Adding a constant, α, to a random variable does not a�ect the variance because the
mean increases by the same value:

Var (X + α) = σ(X + α)2

= σ(X)2
(4.20)

• Multiplying the random variable by a constant, α, increases the variance by the square
of the constant:

Var (αX) = σ(αX)2

= α2σ(X)2
(4.21)

• The variance of the sum of two random variables only equals the sum of the variances
if the variable are independent.

Var (X + Y) = σ(X + Y)2

= σ(X)2 + σ(Y)2
(4.22)

Otherwise, if the random variable are not independent, then we must also include the
covariance of the product of the variables as follows:

Var (X + Y) = σ(X)2 + 2Cov (X, Y) + σ(Y)2 (4.23)

145

4.3.4 Time Averages
In the case where we can not view the entire ensemble of the random process, we must use
time averages to estimate the values of the mean and variance for the process. Generally,
this will only give us acceptable results for independent and ergodic processes, meaning
those processes in which each signal or member of the process seems to have the same
statistical behavior as the entire process. The time averages will also only be taken over a
�nite interval since we will only be able to see a �nite part of the sample.
4.3.4.1 Estimating the Mean
For the ergodic random process, x (t), we will estimate the mean using the time averaging
function de�ned as

X = E [X]
= 1

T

∫ T

0
X (t) dt

(4.24)
However, for most real-world situations we will be dealing with discrete values in our com-
putations and signals. We will represent this mean as

X = E [X]
= 1

N

∑N
n=1 (X [n])

(4.25)

4.3.4.2 Estimating the Variance
Once the mean of our random process has been estimated then we can simply use those
values in the following variance equation (introduced in one of the above sections)

σx
2 = X2 −

(
X
)2 (4.26)

4.3.5 Example
Let us now look at how some of the formulas and concepts above apply to a simple example.
We will just look at a single, continuous random variable for this example, but the calcula-
tions and methods are the same for a random process. For this example, we will consider
a random variable having the probability density function described below and shown in
Figure 4.4.

f (x) =
{

1
10 if 10 ≤ x ≤ 20

0 otherwise (4.27)
First, we will use Equation 4.10 to solve for the mean value.

X =
∫ 20

10
x 1

10dx

= 1
10

(
x2

2

)
|20x=10

= 1
10 (200− 50)

= 15

(4.28)

Using Equation 4.16 we can obtain the mean-square value for the above density function.
X2 =

∫ 20

10
x2 1

10dx

= 1
10

(
x3

3

)
|20x=10

= 1
10

(
8000

3 − 1000
3

)
= 233.33

(4.29)

146 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Probability Density Function

Figure 4.4: A uniform probability density function.

And �nally, let us solve for the variance of this function.
σ2 = X2 −

(
X
)2

= 233.33− 152

= 8.33
(4.30)

4.4 Correlation and Covariance of a Random Signal
When we take the expected value (Section 5.3), or average, of a random process (Sec-
tion 4.1.2), we measure several important characteristics about how the process behaves in
general. This proves to be a very important observation. However, suppose we have several
random processes measuring di�erent aspects of a system. The relationship between these
di�erent processes will also be an important observation. The covariance and correlation
are two important tools in �nding these relationships. Below we will go into more details
as to what these words mean and how these tools are helpful. Note that much of the fol-
lowing discussions refer to just random variables, but keep in mind that these variables can
represent random signals or random processes.
4.4.1 Covariance
To begin with, when dealing with more than one random process, it should be obvious that
it would be nice to be able to have a number that could quickly give us an idea of how
similar the processes are. To do this, we use the covariance, which is analogous to the
variance of a single variable.

De�nition 7: Covariance
A measure of how much the deviations of two or more variables or processes match.

For two processes, X and Y , if they are not closely related then the covariance will be small,
and if they are similar then the covariance will be large. Let us clarify this statement by
describing what we mean by "related" and "similar." Two processes are "closely related" if
their distribution spreads are almost equal and they are around the same, or a very slightly
di�erent, mean.

147

Mathematically, covariance is often written as σxy and is de�ned as
cov (X, Y) = σxy

= E
[(

X −X
) (

Y − Y
)] (4.31)

This can also be reduced and rewritten in the following two forms:
σxy = (xy)− (x) (y) (4.32)

σxy =
∫ ∞

−∞

∫ ∞

−∞

(
X −X

) (
Y − Y

)
f (x, y) dxdy (4.33)

4.4.1.1 Useful Properties
• If X and Y are independent and uncorrelated or one of them has zero mean value,

then
σxy = 0

• If X and Y are orthogonal, then
σxy = − (E [X]E [Y])

• The covariance is symmetric
cov (X, Y) = cov (Y, X)

• Basic covariance identity
cov (X + Y,Z) = cov (X, Z) + cov (Y,Z)

• Covariance of equal variables
cov (X, X) = Var (X)

4.4.2 Correlation
For anyone who has any kind of statistical background, you should be able to see that the
idea of dependence/independence among variables and signals plays an important role when
dealing with random processes. Because of this, the correlation of two variables provides
us with a measure of how the two variables a�ect one another.

De�nition 8: Correlation
A measure of how much one random variable depends upon the other.

This measure of association between the variables will provide us with a clue as to how well
the value of one variable can be predicted from the value of the other. The correlation is
equal to the average of the product of two random variables and is de�ned as

cor (X, Y) = E [XY]
=

∫∞
−∞

∫∞
−∞ xyf (x, y) dxdy

(4.34)

148 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

(a) (b)

(c)

Figure 4.5: Types of Correlation (a) Positive Correlation (b) Negative Correlation (c)Uncorrelated (No Correlation)

4.4.2.1 Correlation Coe�cient
It is often useful to express the correlation of random variables with a range of numbers,
like a percentage. For a given set of variables, we use the correlation coe�cient to give
us the linear relationship between our variables. The correlation coe�cient of two variables
is de�ned in terms of their covariance and standard deviations (Section 4.3.3.1), denoted by
σx, as seen below

ρ =
cov (X, Y)

σxσy
(4.35)

where we will always have
−1 ≤ ρ ≤ 1

This provides us with a quick and easy way to view the correlation between our variables. If
there is no relationship between the variables then the correlation coe�cient will be zero and
if there is a perfect positive match it will be one. If there is a perfect inverse relationship,
where one set of variables increases while the other decreases, then the correlation coe�cient
will be negative one. This type of correlation is often referred to more speci�cally as the
Pearson's Correlation Coe�cient,or Pearson's Product Moment Correlation.

note: So far we have dealt with correlation simply as a number relating the
relationship between any two variables. However, since our goal will be to relate
random processes to each other, which deals with signals as a function of time,
we will want to continue this study by looking at correlation functions (Sec-
tion 5.5).

149

4.4.3 Example
Now let us take just a second to look at a simple example that involves calculating the
covariance and correlation of two sets of random numbers. We are given the following data
sets:

x = {3, 1, 6, 3, 4}

y = {1, 5, 3, 4, 3}

To begin with, for the covariance we will need to �nd the expected value (Section 5.3), or
mean, of x and y.

x =
1
5

(3 + 1 + 6 + 3 + 4) = 3.4

y =
1
5

(1 + 5 + 3 + 4 + 3) = 3.2

xy =
1
5

(3 + 5 + 18 + 12 + 12) = 10

Next we will solve for the standard deviations of our two sets using the formula below (for
a review click here (Section 4.3.3)).

σ =
√

E
[
(X − E [X])2

]
σx =

√
1
5

(0.16 + 5.76 + 6.76 + 0.16 + 0.36) = 1.625

σy =

√
1
6

(4.84 + 3.24 + 0.04 + 0.64 + 0.04) = 1.327

Now we can �nally calculate the covariance using one of the two formulas found above.
Since we calculated the three means, we will use that formula (Equation 4.32) since it will
be much simpler.

σxy = 10− 3.4× 3.2 = −0.88

And for our last calculation, we will solve for the correlation coe�cient, ρ.
ρ =

−0.88
1.625× 1.327

= −0.408

4.4.3.1 Matlab Code for Example
The above example can be easily calculated using Matlab. Below I have included the code
to �nd all of the values above.

x = [3 1 6 3 4];

y = [1 5 3 4 3];

mx = mean(x)

my = mean(y)

mxy = mean(x.*y)

% Standard Dev. from built-in Matlab Functions

150 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

std(x,1)

std(y,1)

% Standard Dev. from Equation Above (same result as std(?,1))

sqrt(1/5 * sum((x-mx).�2))

sqrt(1/5 * sum((y-my).�2))

cov(x,y,1)

corrcoef(x,y)

4.5 Autocorrelation of Random Processes
Before diving into a more complex statistical analysis of random signals and processes (Sec-
tion 5.1), let us quickly review the idea of correlation (Section 5.4). Recall that the correla-
tion of two signals or variables is the expected value of the product of those two variables.
Since our focus will be to discover more about a random process, a collection of random
signals, then imagine us dealing with two samples of a random process, where each sample
is taken at a di�erent point in time. Also recall that the key property of these random
processes is that they are now functions of time; imagine them as a collection of signals.
The expected value (Section 5.3) of the product of these two variables (or samples) will now
depend on how quickly they change in regards to time. For example, if the two variables
are taken from almost the same time period, then we should expect them to have a high
correlation. We will now look at a correlation function that relates a pair of random vari-
ables from the same process to the time separations between them, where the argument to
this correlation function will be the time di�erence. For the correlation of signals from two
di�erent random process, look at the crosscorrelation function (Section 5.6).
4.5.1 Autocorrelation Function
The �rst of these correlation functions we will discuss is the autocorrelation, where each
of the random variables we will deal with come from the same random process.

De�nition 9: Autocorrelation
the expected value of the product of a random variable or signal realization with
a time-shifted version of itself

With a simple calculation and analysis of the autocorrelation function, we can discover a
few important characteristics about our random process. These include:

1. How quickly our random signal or processes changes with respect to the time function
2. Whether our process has a periodic component and what the expected frequency might

be
As was mentioned above, the autocorrelation function is simply the expected value of a
product. Assume we have a pair of random variables from the same process, X1 = X (t1)and X2 = X (t2), then the autocorrelation is often written as

Rxx (t1, t2) = E [X1X2]
=

∫∞
−∞

∫∞
−∞ x1x2f (x1, x2) dx2dx1

(4.36)

151

The above equation is valid for stationary and nonstationary random processes. For sta-
tionary processes (Section 5.2), we can generalize this expression a little further. Given a
wide-sense stationary processes, it can be proven that the expected values from our ran-
dom process will be independent of the origin of our time function. Therefore, we can say
that our autocorrelation function will depend on the time di�erence and not some absolute
time. For this discussion, we will let τ = t2− t1, and thus we generalize our autocorrelation
expression as

Rxx (t, t + τ) = Rxx (τ)
= E [X (t) X (t + τ)] (4.37)

for the continuous-time case. In most DSP course we will be more interested in dealing
with real signal sequences, and thus we will want to look at the discrete-time case of the
autocorrelation function. The formula below will prove to be more common and useful than
Equation 4.36:

Rxx [n, n + m] =
∞∑

n=−∞
(x [n]x [n + m]) (4.38)

And again we can generalize the notation for our autocorrelation function as
Rxx [n, n + m] = Rxx [m]

= E [X [n]X [n + m]] (4.39)

4.5.1.1 Properties of Autocorrelation
Below we will look at several properties of the autocorrelation function that hold for sta-
tionary random processes.
• Autocorrelation is an even function for τ

Rxx (τ) = Rxx (−τ)

• The mean-square value can be found by evaluating the autocorrelation where τ = 0,
which gives us

Rxx (0) = X2

• The autocorrelation function will have its largest value when τ = 0. This value can
appear again, for example in a periodic function at the values of the equivalent periodic
points, but will never be exceeded.

Rxx (0) ≥ |Rxx (τ) |

• If we take the autocorrelation of a period function, then Rxx (τ) will also be periodic
with the same frequency.

4.5.1.2 Estimating the Autocorrleation with Time-Averaging
Sometimes the whole random process is not available to us. In these cases, we would still
like to be able to �nd out some of the characteristics of the stationary random process,
even if we just have part of one sample function. In order to do this we can estimate the
autocorrelation from a given interval, 0 to T seconds, of the sample function.

xx (τ) =
1

T − τ

∫ T−τ

0

x (t)x (t + τ) dt (4.40)

152 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

n
0

x[n]

Figure 4.6: Gaussian density function. By examination, can easily see that the abovestatement is true - the mean equals zero.

However, a lot of times we will not have su�cient information to build a complete continuous-
time function of one of our random signals for the above analysis. If this is the case, we
can treat the information we do know about the function as a discrete signal and use the
discrete-time formula for estimating the autocorrelation.

xx [m] =
1

N −m

N−m−1∑
n=0

(x [n]x [n + m]) (4.41)

4.5.2 Examples
Below we will look at a variety of examples that use the autocorrelation function. We will
begin with a simple example dealing with Gaussian White Noise (GWN) and a few basic
statistical properties that will prove very useful in these and future calculations.

Example 4.1:
We will let x [n] represent our GWN. For this problem, it is important to remember
the following fact about the mean of a GWN function:

E [x [n]] = 0

Along with being zero-mean, recall that GWN is always independent. With these
two facts, we are now ready to do the short calculations required to �nd the
autocorrelation.

Rxx [n, n + m] = E [x [n]x [n + m]]

Since the function, x [n], is independent, then we can take the product of the
individual expected values of both functions.

Rxx [n, n + m] = E [x [n]]E [x [n + m]]

153

Now, looking at the above equation we see that we can break it up further into two
conditions: one when m and n are equal and one when they are not equal. When
they are equal we can combine the expected values. We are left with the following
piecewise function to solve:

Rxx [n, n + m] =
{

E [x [n]]E [x [n + m]] if m 6= 0
E
[
x2 [n]

] if m = 0

We can now solve the two parts of the above equation. The �rst equation is easy
to solve as we have already stated that the expected value of x [n] will be zero. For
the second part, you should recall from statistics that the expected value of the
square of a function is equal to the variance. Thus we get the following results for
the autocorrelation:

Rxx [n, n + m] =
{

0 if m 6= 0
σ2 if m = 0

Or in a more concise way, we can represent the results as
Rxx [n, n + m] = σ2δ [m]

4.6 Crosscorrelation of Random Processes
Before diving into a more complex statistical analysis of random signals and processes (Sec-
tion 5.1), let us quickly review the idea of correlation (Section 5.4). Recall that the correla-
tion of two signals or variables is the expected value of the product of those two variables.
Since our main focus is to discover more about random processes, a collection of random
signals, we will deal with two random processes in this discussion, where in this case we
will deal with samples from two di�erent random processes. We will analyze the expected
value (Section 4.3.1) of the product of these two variables and how they correlate to one
another, where the argument to this correlation function will be the time di�erence. For the
correlation of signals from the same random process, look at the autocorrelation function
(Section 5.5).
4.6.1 Crosscorrelation Function
When dealing with multiple random processes, it is also important to be able to describe
the relationship, if any, between the processes. For example, this may occur if more than
one random signal is applied to a system. In order to do this, we use the crosscorrelation
function, where the variables are instances from two di�erent wide sense stationary random
processes.

De�nition 10: Crosscorrelation
if two processes are wide sense stationary, the expected value of the product of
a random variable from one random process with a time-shifted, random variable
from a di�erent random process

Looking at the generalized formula for the crosscorrelation, we will represent our two random
processes by allowing U = U (t) and V = V (t− τ). We will de�ne the crosscorrelation
function as

Ruv (t, t− τ) = E [UV]
=

∫∞
−∞

∫∞
−∞ uvf (u, v) dvdu

(4.42)
Just as the case with the autocorrelation function, if our input and output, denoted as
U (t) and V (t), are at least jointly wide sense stationary, then the crosscorrelation does not

154 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

depend on absolute time; it is just a function of the time di�erence. This means we can
simplify our writing of the above function as

Ruv (τ) = E [UV] (4.43)
or if we deal with two real signal sequences, x [n] and y [n], then we arrive at a more
commonly seen formula for the discrete crosscorrelation function. See the formula below
and notice the similarities between it and the convolution (Section 2.5) of two signals:

Rxy (n, n−m) = Rxy (m)
=

∑∞
n=−∞ (x [n] y [n−m]) (4.44)

4.6.1.1 Properties of Crosscorrelation
Below we will look at several properties of the crosscorrelation function that hold for two
wide sense stationary (WSS) random processes.
• Crosscorrelation is not an even function; however, it does have a unique symmetry

property:
Rxy (−τ) = Ryx (τ) (4.45)

• The maximum value of the crosscorrelation is not always when the shift equals zero;
however, we can prove the following property revealing to us what value the maximum
cannot exceed.

|Rxy (τ) | ≤
√

Rxx (0)Ryy (0) (4.46)
• When two random processes are statistically independent then we have

Rxy (τ) = Ryx (τ) (4.47)

4.6.2 Examples
Exercise 4.1:
Let us begin by looking at a simple example showing the relationship between two
sequences. Using Equation 4.44, �nd the crosscorrelation of the sequences

x [n] = {. . . , 0, 0, 2,−3, 6, 1, 3, 0, 0, . . . }

y [n] = {. . . , 0, 0, 1,−2, 4, 1,−3, 0, 0, . . . }

for each of the following possible time shifts: m = {0, 3,−1}.

4.7 Introduction to Adaptive Filters
In many applications requiring �ltering, the necessary frequency response may not be known
beforehand, or it may vary with time. (Example; suppression of engine harmonics in a car
stereo.) In such applications, an adaptive �lter which can automatically design itself and
which can track system variations in time is extremely useful. Adaptive �lters are used
extensively in a wide variety of applications, particularly in telecommunications.
Outline of adaptive �lter material

155

Figure 4.7

1. Wiener Filters - L2 optimal (FIR) �lter design in a statistical context
2. LMS algorithm - simplest and by-far-the-most-commonly-used adaptive �lter algo-

rithm
3. Stability and performance of the LMS algorithm - When and how well it works
4. Applications of adaptive �lters - Overview of important applications
5. Introduction to advanced adaptive �lter algorithms - Techniques for special

situations or faster convergence

4.8 Discrete-Time, Causal Wiener Filter
Stochastic L2 optimal (least squares) FIR �lter design problem: Given a wide-sense sta-
tionary (WSS) input signal xk and desired signal dk (WSS ⇔ E [yk] = E [yk+d], ryz (l) =
E [ykzk+l], ryy (0) < ∞ ,) The Wiener �lter is the linear, time-invariant �lter minimizing
E
[
ε2
], the variance of the error.

As posed, this problem seems slightly silly, since dk is already available! However, this
idea is useful in a wide cariety of applications.

Example 4.2:
active suspension system design

Note: optimal system may change with di�erent road conditions or
mass in car, so an adaptive system might be desirable.

Example 4.3:
System identi�cation (radar, non-destructive testing, adaptive control systems)
Exercise 4.2:
Usually one desires that the input signal xk be "persistently exciting," which,
among other things, implies non-zero energy in all frequency bands. Why is this
desirable?

156 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Figure 4.8

Figure 4.9

157

4.8.1 Determining the optimal length-N causal FIR Weiner �lter
Note: for convenience, we will analyze only the causal, real-data case; extensions
are straightforward.

yk =
M−110∑
l=010

(wlxk−l)

argmin
wl

E
[
ε210

]
= E

[
(dk − yk)210

]
= E

[(
dk −

∑M−110
l=010

(wlxk−l)
)210

]
= E

[
dk

210
]
− 210

∑
l

= 0M−1
10 (wlE [dkxk−l]) +

∑M−110
l=010

≤ ft(
∑M−110

m=010
((wlwmE [xk−lxk−m]))

E
[
ε2
]

= rdd (0)− 2
M−1∑
l=0

(wlrdx (l)) +
M−1∑
l=0

(
M−1∑
m=0

(wlwmrxx (l −m))

)
where

rdd (0) = E
[
dk

2
]

rdx (l) = E [dkXk−l]

rxx (l −m) = E [xkxk+l−m]

This can be written in matrix form as
E
[
ε2
]

= rdd (0)− 2PWT + WT RW

where

P =

rdx (0)
rdx (1)...

rdx (M − 1)

R =

rxx (0) rxx (1) rxx (M − 1)

rxx (1) rxx (0)
. rxx (0) rxx (1)

rxx (M − 1) rxx (1) rxx (0)

To solve for the optimum �lter, compute the gradient with respect to the top weights vector
W ∇ .=

∂

∂w0

(
ε2
)

∂
∂w1

(
ε2
)

...
∂

∂wM−1

(
ε2
)

∇ = − (2P) + 2RW

(recall d
dW

(
AT W

)
= AT , d

dW (WMW) = 2MW for symmetric M) setting the gradient
equal to zero ⇒ (

WoptR = P⇒ Wopt = R−1P
)

Since R is a correlation matrix, it must be non-negative de�nite, so this is a minimizer. For
R positive de�nite, the minimizer is unique.

158 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

4.9 Practical Issues in Wiener Filter Implementation
The weiner-�lter, Wopt = R−1P, is ideal for many applications. But several issues must be
addressed to use it in practice.

Exercise 4.3:
In practice one usually won't know exactly the statistics of xk and dk (i.e. R and
P) needed to compute the Weiner �lter.
How do we surmount this problem?
Exercise 4.4:
In many applications, the statistics of xk, dk vary slowly with time.
How does one develop an adaptive system which tracks these changes over time
to keep the system near optimal at all times?
Exercise 4.5:
How can ˆrk

xx (l) be computed e�ciently?
Exercise 4.6:
how does one choose N?

4.9.1 Tradeo�s
Larger N → more accurate estimates of the correlation values → better Ŵopt. However,
larger N leads to slower adaptation.

Note: The success of adaptive systems depends on x, d being roughly stationary
over at least N samples, N > M . That is, all adaptive �ltering algorithms require
that the underlying system varies slowly with respect to the sampling rate and
the �lter length (although they can tolerate occasional step discontinuities in the
underlying system).

4.9.2 Computational Considerations
As presented here, an adaptive �lter requires computing a matrix inverse at each sample.
Actually, since the matrix R is Toeplitz, the linear system of equations can be sovled with
O
(
M2
) computations using Levinson's algorithm, where M is the �lter length. However,

in many applications this may be too expensive, especially since computing the �lter out-
put itself requires O (M) computations. There are two main approaches to resolving the
computation problem

1. Take advantage of the fact that Rk+1 is only slightly changed from Rk to reduce the
computation to O (M); these algorithms are called Fast Recursive Least Squareds
algorithms; all methods proposed so far have stability problems and are dangerous to
use.

2. Find a di�erent approach to solving the optimization problem that doesn't require
explicit inversion of the correlation matrix.
Note: Adaptive algorithms involving the correlation matrix are calledRecursive
least Squares (RLS) algorithms. Historically, they were developed after the LMS
algorithm, which is the slimplest and most widely used approach O (M). O

(
M2
)

RLS algorithms are used in applications requiring very fast adaptation.

159

Figure 4.10

4.10 Quadratic Minimization and Gradient Descent
4.10.1 Quadratic minimization problems
The least squares optimal �lter design problem is quadratic in the �lter coe�cients:

E
[
ε2
]

= rdd (0)− 2PT W + WT RW

If R is positive de�nite, the error surface E
[
ε2
]
(w0, w1, . . . , wM−1) is a unimodal "bowl"

in RN . The problem is to �nd the bottom of the bowl. In an adaptive �lter context, the
shape and bottom of the bowl may drift slowly with time; hopefully slow enough that the
adaptive algorithm can track it.

For a quadratic error surface, the bottom of the bowl can be found in one step by com-
puting R−1P. Most modern nonlinear optimization methods (which are used, for example,
to solve the LP optimal IIR �lter design problem!) locally approximate a nonlinear func-
tion with a second-order (quadratic) Taylor series approximation and step to the bottom of
this quadratic approximation on each iteration. However, an older and simpler appraoch to
nonlinear optimaztion exists, based on gradient descent. The idea is to iteratively �nd
the minimizer by computing the gradient of the error function: E∇ = ∂

∂wi

(
E
[
ε2
]). The

gradient is a vector in RM pointing in the steepest uphill direction on the error surface at a
given point Wi, with ∇ having a magnitude proportional to the slope of the error surface
in this steepest direction.

By updating the coe�cient vector by taking a step opposite the gradient direction :
Wi+1 = Wi − µ∇i, we go (locally) "downhill" in the steepest direction, which seems to
be a sensible way to iteratively solve a nonlinear optimization problem. The performance
obviously depends on µ; if µ is too large, the iterations could bounce back and forth up
out of the bowl. However, if µ is too small, it could take many iterations to approach the
bottom. We will determine criteria for choosing µ later.

160 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Contour plot of ε-squared

Figure 4.11

In summary, the gradient descent algorithm for solving the Weiner �lter problem is:
Guess W 0

do i = 1,∞

∇i = − (2P) + 2RW i

W i+1 = W i − µ∇i

repeat
Wopt = W∞

The gradient descent idea is used in the LMS adaptive �tler algorithm. As presented,
this alogrithm costs O

(
M2
) computations per iteration and doesn't appear very attractive,

but LMS only requires O (M) computations and is stable, so it is very attractive when
computation is an issue, even thought it converges more slowly then the RLS algorithms we
have discussed so far.

4.11 The LMS Adaptive Filter Algorithm
Recall the Weiner �lter problem {xk}, {dk} jointly wide sense stationary

Find W minimizing E
[
εk

2
]

εk = dk − yk = dk −
M−1∑
i=0

(wixk−i) = dk −XkT
W k

Xk =

xk

xk−1...
xk−M+1

161

Figure 4.12

W k =

wk

0

wk
1...

wk
M−1

The superscript denotes absolute time, and the subscript denotes time or a vector index.

the solution can be found by setting the gradient = 0

∇k = ∂
∂W

(
E
[
εk

2
])

= E
[
2εk

(
−Xk

)]
= E

[
−2
(
dk −XkT

Wk

)
Xk
]

= −
(
2E
[
dkXk

])
+
(
E
[
XkT

])
W

= −2P + 2RW

(4.48)

⇒
(
Wopt = R−1P

)
Alternatively, Wopt can be found iteratively using a gradient descent technique

W k+1 = W k − µ∇k

In practice, we don't know R and P exactly, and in an adaptive context they may be slowly
varying with time.

To �nd the (approximate) Wiener �lter, some approximations are necessary. As always,
the key is to make the right approximations!

Good idea: Approximate R and P : ⇒ RLS methods, as discussed last time.
Better idea: Approximate the gradient!

∇k =
∂

∂W

(
E
[
εk

2
])

Note that εk
2 itself is a very noisy approximation to E

[
εk

2
]. We can get a noisy approxi-

mation to the gradient by �nding the gradient of εk
2! Widrow and Ho� �rst published the

LMS algorithm, based on this clever idea, in 1960.
∇̂k =

∂

∂W

(
εk

2
)

= 2εk
∂

∂W

(
dk −W kT

Xk
)

= 2εk

(
−Xk

)
= −

(
2εkXk

)

162 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

This yields the LMS adaptive �lter algorithm
Example 4.4: The LMS Adaptive Filter Algorithm

1.yk = W kT
Xk =

∑M−1
i=0

(
wk

i xk−i

)
2.εk = dk − yk

3.W k+1 = W k − µ∇̂k = W k − µ
(
−2εkXk

)
= W k + 2µεkXk (wk+1

i = wk
i +

2µεkxk−i)
The LMS algorithm is often called a stochastic gradient algorithm, since ∇̂k is a noisy

gradient. This is by far the most commonly used adaptive �ltering algorithm, because
1. it was the �rst
2. it is very simple
3. in practice it works well (except that sometimes it converges slowly)
4. it requires relatively litle computation
5. it updates the tap weights every sample, so it continually adapts the �lter
6. it tracks slow changes in the signal statistics well

4.11.1 Computational Cost of LMS

To Compute ⇒ yk εk W k+1 = Total
multiplies M 0 M + 1 2M + 1

adds M − 1 1 M 2M

So the LMS algorithm is O (M) per sample. In fact, it is nicely balanced in that the �lter
computation and the adaptation require the same amount of computation.

Note that the parameter µ plays a very important role in the LMS algorithm. It can also
be varied with time, but usually a constant µ ("convergence weight facor") is used, chosen
after experimentation for a given application.
4.11.1.1 Tradeo�s
large µ: fast convergence, fast adaptivity

small µ: accurate W → less misadjustment error, stability

4.12 First Order Convergence Analysis of the LMS Algo-
rithm
4.12.1 Analysis of the LMS algorithm
It is important to analyze the LMS algorithm to determine under what conditions it is
stable, whether or not it converges to the Wiener solution, to determine how quickly it
converges, how much degredation is su�ered due to the noisy gradient, etc. In particular,
we need to know how to choose the parameter µ.

163

4.12.1.1 Mean of W
does W k, k →∞ approach the Wiener solution? (since W k is always somewhat random in
the approximate gradient-based LMS algorithm, we ask whether the expected value of the
�lter coe�cients converge to the Wiener solution)

E
[
W k+1

]
= W k+1∗

= E
[
W k + 2µεkXk

]
= W k∗ + 2µE

[
dkXk

]
+ 2µE

[
−
((

W kT
Xk
)

Xk
)]

= W k∗ + 2µP +
(
−
(
2µE

[(
W kT

Xk
)

Xk
])) (4.49)

4.12.1.1.1 Patently False Assumption
Xk and Xk−i, Xk and dk−i, and dk and dk−i are statistically independent, i 6= 0. This
assumption is obviously false, since Xk−1 is the same as Xk except for shifting down the
vector elements one place and adding one new sample. We make this assumption because
otherwise it becomes extremely di�cult to analyze the LMS algorithm. (First good analysis
not making this assumption: Macchi and Eweda[?]) Many simulations and much practical
experience has shown that the results one obtains with analyses based on the patently false
assumption above are quite accurate in most situations

With the independence assumption, W k (which depends only on previous Xk−i, dk−i)
is statitically independent of Xk, and we can simplify E

[(
W kT

Xk
)

Xk
]

Now (W kT
Xk
)

Xk is a vector, and

E
[(

W kT
Xk
)

Xk
]

= E

...(∑M−1
i=0

(
wk

i xk−i

))
xk−j

...

=

...∑M−1

i=0

(
E
[
wk

i xk−ixk−j

])
...

=

...∑M−1

i=0

((
wk

i

)
E [xk−ixk−j]

)
...

=

...∑M−1

i=0

(
wk

i
∗
rxx (i− j)

)
...

= RW k∗

(4.50)

where R = E
[
XkXkT

] is the data correlation matrix.
Putting this back into our equation

W k+1 = W k + 2µP +
(
−
(
2µRW k

))
= (I − 2µR) W k + 2µP

(4.51)

164 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Now if W k→∞ converges to a vector of �nite magnitude ("convergence in the mean"), what
does it converge to?

If W k converges, then as k →∞, W k+1 ≈ W k, and
W∞ = (I − 2µR) W∞ + 2µP

2µRW∞ = 2µP

RW∞ = P

or
Wopt = R−1P

the Wiener solution!
So the LMS algorithm, if it converges, gives �lter coe�cients which on average are the

Wiener coe�cients! This is, of course, a desirable result.
4.12.1.2 First-order stability
But does W k converge, or under what conditions?

Let's rewrite the analysis in term of V k, the "mean coe�cient error vector" V k =
W k −Wopt, where Wopt is the Wiener �lter

W k+1 = W k − 2µRW k + 2µP

W k+1 −Wopt = W k −Wopt +
(
−
(
2µRW k

))
+ 2µRWopt − 2µRWopt + 2µP

V k+1 = V k − 2µRV k + (− (2µRWopt)) + 2µP

Now Wopt = R−1, so
V k+1 = V k − 2µRV k +

(
−
(
2µRR−1P

))
+ 2µP = (I − 2µR) V k

We wish to know under what conditions V k→∞ → 0?
4.12.1.2.1 Linear Algebra Fact
Since R is positive de�nite, real, and symmetric, all the eigenvalues are real and positive.
Also, we can write R as (Q−1ΛQ

), where Λ is a diagonal matrix with diagonal entries λiequal to the eigenvalues of R, and Q is a unitary matrix with rows equal to the eigenvectors
corresponding to the eigenvalues of R.

Using this fact,
V k+1 =

(
I − 2µ

(
Q−1ΛQ

))
V k

multiplying both sides through on the left by Q: we get
QV k+1 = (Q− 2µΛQ)V k = (1− 2µΛ) QV k

Let V ' = QV :
V 'k+1 = (1− 2µΛ) V 'k

Note that V ' is simply V in a rotated coordinate set in Rm, so convergence of V ' implies
convergence of V .

Since 1−2µΛ is diagonal, all elements of V ' evolve independently of each other. Conver-
gence (stability) bolis down to whether all M of these scalar, �rst-order di�erence equations
are stable, and thus → 0.

V 'k+1
i = (1− 2µλi)V 'k

i , i = [1, 2, . . . ,M]

165

These equations converge to zero if |1− 2µλi| < 1, or |µλi| < 1 , µ and λi are positive, sowe require µ < 1
λi

, so for convergence in the mean of the LMS adaptive �lter, we require
µ <

1
λmax

(4.52)
This is an elegant theoretical result, but in practice, we may not know λmax, it may be time-
varying, and we certainly won't want to compute it. However, another useful mathematical
fact comes to the rescue...

tr (R) =
M∑
i=1

rii =
M∑
i=1

λi ≥ λmax

Since the eigenvalues are all positive and real.
For a correlation matrix, rii = r (0) , i ∈ {1,M} . So tr (R) = Mr (0) = ME [xkxk].

We can easily estimate r (0) with O (1) computations/sample, so in practice we might require
µ <

1

M ˆr (0)

as a conservative bound, and perhaps adapt µ accordingly with time.
4.12.1.3 Rate of convergence
Each of the modes decays as

(1− 2µλi)
k

Good news: The initial rate of convergence is dominated by the fastest mode
1−2µλmax. This is not surprising, since a dradient descent method goes "downhill"
in the steepest direction
Bad news: The �nal rate of convergence is dominated by the slowest mode
1− 2µλmin. For small λmin, it can take a long time for LMS to converge.

Note that the convergence behavior depends on the data (via R). LMS converges relatively
quickly for roughly equal eigenvalues. Unequal eigenvalues slow LMS down a lot.

4.13 Adaptive Equalization
goal: Design an approximate inverse �lter to cancel out as much distortion as
possible.

In principle, WH ≈ z−∆, or W ≈ z−∆

H , so that the overall response of the top path is
approximately δ (n−∆). However, limitations on the form of W (FIR) and the presence of
noise cause the equalization to be imperfect.
4.13.1 Important Application
Channel equalization in a digital communication system. If the channel distorts the pulse
shape, the matched �lter will no longer be matched, intersymbol interference may increase,
and the system performance will degrade.

An adaptive �lter is often inserted in front of the matched �lter to compensate for the
channel. This is, of course, unrealizable, since we do not have access to the original
transmitted signal, sk.There are two common solutions to this problem:

166 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Figure 4.13

Figure 4.14

Figure 4.15

167

Decision-directed equalizer

Figure 4.16

1. Periodically broadcast a known training signal. The adaptation is switched on only
when the training signal is being broadcast and thus sk is known.

2. Decision-directed feedback: If the overall system is working well, then the output
ŝk−∆0 should almost always equal sk−∆0 . We can thus use our received digital com-
munication signal as the desired signal, since it has been cleaned of noise (we hope)
by the nonlinear threshold device! As long as the error rate in ŝk is not too high (say
< 75%), this method works. Otherwise, dk is so inaccurate that the adaptive �lter can
never �nd the Wiener solution. This method is widely used in the telephone system
and other digital communication networks.

168 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Solutions to Exercises in Chapter 4
Solution to Exercise 4.1:

1.For m = 0, we should begin by �nding the product sequence s [n] = x [n] y [n]. Doing
this we get the following sequence:

s [n] = {. . . , 0, 0, 2, 6, 24, 1,−9, 0, 0, . . . }

and so from the sum in our crosscorrelation function we arrive at the answer of
Rxy (0) = 22

2.For m = 3, we will approach it the same was we did above; however, we will now shift
y [n] to the right. Then we can �nd the product sequence s [n] = x [n] y [n− 3], which
yields

s [n] = {. . . , 0, 0, 0, 0, 0, 1,−6, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of
Rxy (3) = −6

3.For m = −1, we will again take the same approach; however, we will now shift y [n] to
the left. Then we can �nd the product sequence s [n] = x [n] y [n + 1], which yields

s [n] = {. . . , 0, 0,−4,−12, 6,−3, 0, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of
Rxy (−1) = −13

Solution to Exercise 4.3:
Estimate the statistics

ˆrxx (l) ≈ 1
N

N−1∑
k=0

(xkxk+l)

ˆrxd (l) ≈ 1
N

N−1∑
k=0

(dkxk−l)

then solve Ŵopt = ˆR−1 = P̂

Solution to Exercise 4.4:
Use short-time windowed estiamtes of the correlation functions.

Equation in Question:

(
ˆrxx (l)
)k

=
1
N

N−1∑
m=0

(xk−mxk−m−l)

(
ˆrdx (l)
)k

=
1
N

N−1∑
m=0

(xk−m−ldk−m)

and Wopt
k ≈

(
R̂k

)−1

P̂k

169

Solution to Exercise 4.5:
Recursively!

rk
xx (l) = rk−1

xx (l) + xkxk−l − xk−Nxk−N−l

This is critically stable, so people usually do
(1− α) rxx

k (l) = αrk−1
xx (l) + xkxk−l

170 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

Glossary

A Autocorrelation
1. the expected value of the product

of a random variable or signal
realization with a time-shifted
version of itself

C Correlation
1. A measure of how much one

random variable depends upon
the other.

Covariance
1. A measure of how much the

deviations of two or more
variables or processes match.

Crosscorrelation
1. if two processes are wide sense

stationary, the expected value of
the product of a random variable
from one random process with a
time-shifted, random variable
from a di�erent random process

D di�erence equation
1. An equation that shows the

relationship between consecutive
values of a sequence and the
di�erences among them. They
are often rearranged as a
recursive formula so that a
systems output can be computed
from the input signal and past
outputs.
Example:

y [n] + 7y [n− 1] + 2y [n− 2]

=x[n]− 4x [n− 1] (4.1)
F FFT

1. (Fast Fourier Transform) An
e�cient computational

algorithm for computing the
DFT3.

P poles
1.The value(s) for z where Q (z) = 0.
2. The complex frequencies that

make the overall gain of the �lter
transfer function in�nite.

R random process
1. A family or ensemble of signals

that correspond to every possible
outcome of a certain signal
measurement. Each signal in this
collection is referred to as a
realization or sample
function of the process.
Example:

As an example of a random
process, let us look at the
Random Sinusoidal Process
below. We use
f [n] = Asin (ωn + φ) to
represent the sinusoid with a
given amplitude and phase. Note
that the phase and amplitude of
each sinusoid is based on a
random number, thus making
this a random process.

S stationary process
1. a random process where all of its

statistical properties do not vary
with time

Z zeros
1.The value(s) for z where P (z) = 0.
2. The complex frequencies that

make the overall gain of the �lter
transfer function zero.

3http://cnx.org/content/m10249/latest/

171

Index of Keywords and Terms
Keywords are listed by the section with that keyword (page numbers are in paren-
theses). Keywords do not necessarily appear in the text of the page. They are merely
associated with that section. Ex. apples, � 1.1 (1) Terms are referenced by the page
they appear on. Ex. apples, 1

A A/D, � 3.7(57), � 3.8(65), � 3.11(86)
adaptive, 155, 158
Aliasing, � 3.3(49)
alphabet, 10
amplitude response, � 4.6(116), 116
analog, � 3.7(57), � 3.8(65), � 4.5(111)
analog signal, � 2.1(3)
analog signals, � 4.5(111)
Applet, � 3.3(49)
autocorrelation, � 5.2(140), � 5.5(150),
150, 150
average, � 5.3(142)
average power, 143

B bandlimited, 69
basis, � 2.6(15), 22, � 2.8(30), 30
basis matrix, � 2.8(30), 31
bilateral z-transform, 103
block diagram, � 2.2(4)
blur, � 3.12(95)

C cascade, � 2.2(4)
causal, 111
characteristic polynomial, 102
circular convolution, � 3.11(86), 89
coe�cient vector, � 2.8(30), 32
commutative, 12
complement, � 2.6(15), 23
complex, � 4.4(108)
complex exponential sequence, 8
computational algorithm, 170
continuous frequency, � 2.10(34),
� 2.11(36)
continuous random process, 140
continuous time, � 2.9(33), � 2.10(34)
Continuous-Time Fourier Transform,
34
convolution, � 2.5(11), 12, � 3.11(86),
� 3.12(95)
convolution sum, 12

correlation, 147, 147, � 5.5(150)
correlation coe�cient, 148
correlation functions, 148
countably in�nite, 114
covariance, 146, 146
Crosscorrelation, 153
crosscorrelation function, 153
CT, � 3.6(55)
CTFT, � 2.10(34), � 2.13(38),
� 3.8(65)

D D/A, � 3.7(57), � 3.8(65), � 3.11(86)
deblurring, � 3.12(95), 95
decompose, � 2.8(30), 30
deconvolution, � 3.12(95)
delayed, 10
density function, � 5.2(140)
design, � 4.11(124)
deterministic, � 5.1(137)
deterministic signals, 137
DFT, � 2.12(36), � 2.13(38), � 3.7(57),
� 3.10(83), � 3.11(86), � 4.5(111)
di�erence equation, � 2.4(10), 11, 99,
99, � 4.5(111)
digital, � 3.7(57), � 3.8(65),
� 4.11(124)
digital �lter, � 4.5(111)
digital signal, � 2.1(3)
digital signal processing, � 1(1),
� 3.10(83), � 4.5(111)
direct method, 101
direct sum, � 2.6(15), 23
discrete fourier transform, � 3.7(57),
� 3.10(83), � 3.11(86), � 4.5(111)
Discrete Fourier Transform (DFT), 59
discrete random process, 140
discrete time, � 2.5(11), � 2.9(33),
� 2.11(36), � 4.3(106)
discrete time fourier transform,

172 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

� 3.7(57)
discrete-time, � 4.5(111)
discrete-time convolution, 11
discrete-time �ltering, � 4.5(111)
distribution function, � 5.2(140)
DSP, � 3.10(83), � 3.12(95),
� 4.3(106), � 4.5(111), � 4.9(121),
� 4.10(122), � 4.11(124), � 5.2(140),
� 5.3(142), � 5.5(150)
DT, � 2.5(11)
DTFT, � 2.11(36), � 2.13(38),
� 3.7(57), � 3.8(65)

E envelop delay, 118
ergodic, 145
Examples, � 3.3(49)
exercise, � 4.13(132)

F fast fourier transform, � 2.13(38)
feedback, � 2.2(4)
FFT, � 2.12(36), � 2.13(38), 38
�lter, � 4.10(122), � 4.11(124)
�lter structures, � 4.7(119)
�ltering, � 4.5(111)
�lters, � 3.11(86), � 4.9(121)
�nite, 21
�nite dimensional, � 2.6(15), 23
FIR, � 4.9(121), � 4.10(122),
� 4.11(124), � 4.12(130), � 4.13(132)
FIR �lter, � 4.8(119)
�rst order stationary, � 5.2(140)
�rst-order stationary, 141
fourier series, � 2.9(33)
fourier transform, � 2.9(33),
� 2.10(34), � 2.11(36), � 3.8(65),
� 3.10(83), � 3.11(86), � 4.2(103), 103,
� 4.5(111)
fourier transforms, � 3.6(55)
frames, 85
frequency, � 3.6(55)
frequency domain, � 2.13(38)
FT, � 3.6(55), � 3.12(95)
functional, 4

G gradient descent, 159
group delay, 118

H Hanning window, � 3.10(83), 85
hilbert, � 2.7(29), � 2.8(30)
Hilbert Space, � 2.6(15), 27, 29
hilbert spaces, � 2.7(29), � 2.8(30)
Hold, � 3.5(53)

homogeneous solution, 101
I identity matrix, 32

IIR Filter, � 4.8(119)
Illustrations, � 3.3(49)
image, � 3.12(95)
impulse response, � 2.5(11)
independent, 144
indirect method, 101
information, � 2.1(3)
initial conditions, 100
inner, � 2.7(29)
inner product, � 2.7(29)
inner product space, 29
input, � 2.2(4)
invertible, � 2.6(15), 29

J Java, � 3.3(49)
joint density function, � 5.2(140), 141
joint distribution function, 140

K key concepts, � 1(1)
L laplace transform, � 2.9(33)

linear, � 4.5(111)
linear algebra, � 2.12(36)
linear and time-invariant, 11
Linear discrete-time systems, 10
linear transformation, � 2.6(15), 27
linear-phase FIR �lters, � 4.6(116)
linearly dependent, � 2.6(15), 20
linearly independent, � 2.6(15), 20,
143
live, 49
LTI, 11
LTI Systems, � 3.8(65)

M Matlab, � 3.4(53), � 4.12(130),
� 4.13(132)
matrix, � 2.12(36)
matrix representation, � 2.6(15), 28
mean, � 5.3(142), 142
mean-square value, 143
moment, 143

N narrow-band spectrogram, 72
nonstationary, � 5.2(140), 140
normed linear space, 29
nyquist, � 3.6(55)

O optimal, 129
order, 100
orthogonal, � 2.6(15), 25, 29

173

orthogonal compliment, � 2.6(15), 26
orthonormal, � 2.6(15), 25, � 2.8(30)
orthonormal basis, � 2.8(30), 30
output, � 2.2(4)
Overview, � 3.1(45)

P parallel, � 2.2(4)
particular solution, 101
pdf, � 5.2(140)
Pearson's Correlation Coe�cient, 148
phase delay, 118
pole, � 4.4(108)
poles, 108
power series, 103
probability, � 5.2(140)
probability density function (pdf), 140
probability distribution function, 140
probability function, � 5.2(140)
Proof, � 3.2(46)

R random, � 5.1(137), � 5.3(142),
� 5.5(150)
random process, � 5.1(137), 138, 138,
140, � 5.2(140), � 5.3(142), � 5.5(150)
random sequence, 140
random signal, � 5.1(137), � 5.3(142)
random signals, � 5.1(137), 137,
� 5.3(142), � 5.5(150)
realization, 170
Reconstruction, � 3.2(46), � 3.4(53),
� 3.5(53)
Recursive least Squares, 158
restoration, � 3.12(95)
ROC, � 4.2(103), 103

S sample function, 170
Sampling, � 3.1(45), � 3.2(46),
� 3.3(49), � 3.4(53), � 3.5(53),
� 3.6(55), � 3.7(57)
second order stationary, � 5.2(140)
second-order stationary, 141
Shannon, � 3.2(46)
shift-invariant, � 2.4(10), 11,
� 4.5(111)
short time fourier transform, � 3.9(72)
signal, � 2.1(3), 3, � 2.2(4)
signals, � 2.5(11), � 2.9(33)
signals and systems, � 2.5(11)
span, � 2.6(15), 21
spectrogram, 72
spectrograms, � 3.10(83)
SSS, � 5.2(140)

stable, 111
standard basis, � 2.6(15), 28, � 2.8(30)
stationarity, � 5.2(140)
stationary, � 5.2(140), � 5.5(150)
stationary process, 140
stationary processes, 140
stft, � 3.9(72)
stochastic, � 5.1(137)
stochastic gradient, 162
stochastic signals, 137
strict sense stationary, � 5.2(140)
strict sense stationary (SSS), 142
subspace, � 2.6(15), 20
superposition, � 2.4(10)
symmetries, 40
System, � 3.5(53)
system theory, � 2.2(4)
systems, � 2.9(33)

T The stagecoach e�ect, 52
time, � 3.6(55)
time-varying behavior, 68
training signal, 167
transfer function, 100, � 4.5(111),
� 4.7(119)
transform pairs, � 4.3(106)
transforms, 33
twiddle factors, 40

U uncorrelated, 143
uncountably in�nite, 114
unilateral, � 4.3(106)
unilateral z-transform, 103
unique, 30
unit sample, 9
unit-sample response, 112
unitary, � 2.6(15), 29

V variance, � 5.3(142), 144
vector, � 2.12(36)
vectors, � 2.6(15), 19

W well-de�ned, � 2.6(15), 23
wide sense stationary, � 5.2(140)
wide-band spectrogram, 72
wide-sense stationary (WSS), 142
window, 85
WSS, � 5.2(140)

Z z transform, � 2.9(33), � 4.3(106)
z-plane, 103, � 4.4(108)
z-transform, � 4.2(103), 103, � 4.3(106)

174 CHAPTER 4. STATISTICAL AND ADAPTIVE SIGNAL PROCESSING

z-transforms, 106
zero, � 4.4(108)

zero-pad, 113
zeros, 108

